Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline pyridoxal Identifier CHEBI:17310 (CAS: 66-72-8) help_outline Charge 0 Formula C8H9NO3 InChIKeyhelp_outline RADKZDMFGJYCBB-UHFFFAOYSA-N SMILEShelp_outline [H]C(=O)c1c(CO)cnc(C)c1O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 4-pyridoxolactone Identifier CHEBI:16871 (Beilstein: 140752; CAS: 4753-19-9) help_outline Charge 0 Formula C8H7NO3 InChIKeyhelp_outline HHPDVQLBYQFYFA-UHFFFAOYSA-N SMILEShelp_outline Cc1ncc2COC(=O)c2c1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:21336 | RHEA:21337 | RHEA:21338 | RHEA:21339 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Molecular cloning, expression, and properties of an unusual aldo-keto reductase family enzyme, pyridoxal 4-dehydrogenase, that catalyzes irreversible oxidation of pyridoxal.
Yokochi N., Yoshikane Y., Trongpanich Y., Ohnishi K., Yagi T.
Microbacterium luteolum YK-1 has pyridoxine degradation pathway I. We have cloned the structural gene for the second step enzyme, pyridoxal 4-dehydrogenase. The gene consists of 1,026-bp nucleotides and encodes 342 amino acids. The enzyme was overexpressed under cold shock conditions with a coexpr ... >> More
Microbacterium luteolum YK-1 has pyridoxine degradation pathway I. We have cloned the structural gene for the second step enzyme, pyridoxal 4-dehydrogenase. The gene consists of 1,026-bp nucleotides and encodes 342 amino acids. The enzyme was overexpressed under cold shock conditions with a coexpression system and chaperonin GroEL/ES. The recombinant enzyme showed the same properties as the M. luteolum enzyme. The primary sequence of the enzyme was 54% identical with that of d-threo-aldose 1-dehydrogenase from Agrobacterium tumefaciens, a probable aldo-keto reductase (AKR). Upon multiple alignment with enzymes belonging to the 14 AKR families so far reported, pyridoxal 4-dehydrogenase was found to form a new AKR superfamily (AKR15) together with A. tumefaciens d-threo-aldose 1-dehydrogenase and Pseudomonas sp. l-fucose dehydrogenase. These enzymes belong to a distinct branch from the two main ones found in the phylogenic tree of AKR proteins. The enzymes on the new branch are characterized by their inability to reduce the corresponding lactones, which are produced from pyridoxal or sugars. Furthermore, pyridoxal 4-dehydrogenase prefers NAD(+) to NADP(+) as a cofactor, although AKRs generally show higher affinities for the latter. << Less
-
Identification of a new tetrameric pyridoxal 4-dehydrogenase as the second enzyme in the degradation pathway for pyridoxine in a nitrogen-fixing symbiotic bacterium, Mesorhizobium loti.
Yokochi N., Nishimura S., Yoshikane Y., Ohnishi K., Yagi T.
We have found for the first time that a chromosomal gene, mlr6807, in Mesorhizobium loti encodes a new tetrameric pyridoxal 4-dehydrogenase (PLDH). The recombinant enzyme expressed in Escherichia coli cells was homogenously purified and characterized. The enzyme consisted of four subunits each wit ... >> More
We have found for the first time that a chromosomal gene, mlr6807, in Mesorhizobium loti encodes a new tetrameric pyridoxal 4-dehydrogenase (PLDH). The recombinant enzyme expressed in Escherichia coli cells was homogenously purified and characterized. The enzyme consisted of four subunits each with a molecular weight of 26,000+/-1000, and exhibited Km and kcat values of 91+/-2 microM and 149+/-1s(-1), respectively. PLDH used NAD+ as a cosubstrate, showed no activity toward sugars, and belonged to a short-chain dehydrogenase/reductase family. The mlr6807 gene-disrupted M. loti cells could grow in a nutrient-rich TY medium but not in a synthetic one containing pyridoxine or pyridoxamine as the sole carbon and nitrogen source. Thus, it was found that PLDH is essential for the assimilation of vitamin B6 compounds and the second step enzyme in their degradation pathway in M. loti. << Less