Enzymes
UniProtKB help_outline | 43,661 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 3-phosphoshikimate Identifier CHEBI:145989 (Beilstein: 4882573) help_outline Charge -3 Formula C7H8O8P InChIKeyhelp_outline QYOJSKGCWNAKGW-PBXRRBTRSA-K SMILEShelp_outline O[C@@H]1CC(=C[C@@H](OP([O-])([O-])=O)[C@H]1O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphoenolpyruvate Identifier CHEBI:58702 (Beilstein: 3951723) help_outline Charge -3 Formula C3H2O6P InChIKeyhelp_outline DTBNBXWJWCWCIK-UHFFFAOYSA-K SMILEShelp_outline [O-]C(=O)C(=C)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 39 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5-O-(1-carboxyvinyl)-3-phosphoshikimate Identifier CHEBI:57701 Charge -4 Formula C10H9O10P InChIKeyhelp_outline QUTYKIXIUDQOLK-PRJMDXOYSA-J SMILEShelp_outline O[C@H]1[C@@H](CC(=C[C@H]1OP([O-])([O-])=O)C([O-])=O)OC(=C)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:21256 | RHEA:21257 | RHEA:21258 | RHEA:21259 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
The enzymic synthesis of chorismic and prephenic acids from 3-enolpyruvylshikimic acid 5-phosphate.
Morell H., Clark M.J., Knowles P.F., Sprinson D.B.
J Biol Chem 242:82-90(1967) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Substrate synergism and the steady-state kinetic reaction mechanism for EPSP synthase from Escherichia coli.
Gruys K.J., Walker M.C., Sikorski J.A.
Previous studies of Escherichia coli 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS, EC 2.5.1.19) have suggested that the kinetic reaction mechanism for this enzyme in the forward direction is equilibrium ordered with shikimate 3-phosphate (S3P) binding first followed by phosphoenolpyruvate ( ... >> More
Previous studies of Escherichia coli 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS, EC 2.5.1.19) have suggested that the kinetic reaction mechanism for this enzyme in the forward direction is equilibrium ordered with shikimate 3-phosphate (S3P) binding first followed by phosphoenolpyruvate (PEP). Recent results from this laboratory, however, measuring direct binding of PEP and PEP analogues to free EPSPS suggest more random character to the enzyme. Steady-state kinetic and spectroscopic studies presented here indicate that E. coli EPSPS does indeed follow a random kinetic mechanism. Initial velocity studies with S3P and PEP show competitive substrate inhibition by PEP added to a normal intersecting pattern. Substrate inhibition is proposed to occur by competitive binding of PEP at the S3P site [Ki(PEP) = 6-8 mM]. To test for a productive EPSPS.PEP binary complex, the reaction order of EPSPS was evaluated with shikimic acid and PEP as substrates. The mechanism for this reaction is equilibrium ordered with PEP binding first giving a Kia value for PEP in agreement with the independently measured Kd of 0.39 mM (shikimate Km = 25 mM). Results from this study also show that the 3-phosphate moiety of S3P offers 8.7 kcal/mol in binding energy versus a hydroxyl in this position. Over 60% of this binding energy is expressed in binding of substrate to enzyme rather than toward increasing kcat. Glyphosate inhibition of shikimate turnover was poor with approximately 8 x 10(4) loss in binding capacity compared to the normal reaction, consistent with the independently measured Kd of 12 mM for the EPSPS.glyphosate binary complex. The EPSPS.glyphosate complex induces shikimate binding, however, by a factor of 7 greater than EPSPS.PEP. Carboxyallenyl phosphate and (Z)-3-fluoro-PEP were found to be strong inhibitors of the enzyme that have surprising affinity for the S3P binding domain in addition to the PEP site as measured both kinetically and by direct observation with 31P NMR. The collective data indicate that the true kinetic mechanism for EPSPS in the forward direction is random with synergistic binding occurring between substrates and inhibitors. The synergism explains how the mechanism can be random with S3P and PEP, but yet equilibrium ordered with PEP binding first for shikimate turnover. Synergism also accounts for how glyphosate can be a strong inhibitor of the normal reaction, but poor versus shikimate turnover. << Less
-
Shikimate-3-phosphate binds to the isolated N-terminal domain of 5-enolpyruvylshikimate-3-phosphate synthase.
Stauffer M.E., Young J.K., Evans J.N.
5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the transfer of the enolpyruvyl moiety from phosphoenolpyruvate (PEP) to shikimate-3-phosphate (S3P). Mutagenesis and X-ray crystallography data suggest that the active site of the enzyme is in the cleft between its two globular domains; ... >> More
5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the transfer of the enolpyruvyl moiety from phosphoenolpyruvate (PEP) to shikimate-3-phosphate (S3P). Mutagenesis and X-ray crystallography data suggest that the active site of the enzyme is in the cleft between its two globular domains; however, they have not defined which residues are responsible for substrate binding and catalysis. Here we attempt to establish the binding of the substrate S3P to the isolated N-terminal domain of EPSP synthase using a combination of NMR spectroscopy and isothermal titration calorimetry. Our experimental results indicate that there is a saturable and stable conformational change in the isolated N-terminal domain upon S3P binding and that the chemical environment of the S3P phosphorus when bound to the isolated domain is very similar to that of S3P bound to EPSP synthase. We also conclude that most of the free energy of S3P binding to EPSP synthase is contributed by the N-terminal domain. << Less