Reaction participants Show >> << Hide
- Name help_outline trans-4-hydroxy-L-proline Identifier CHEBI:58375 Charge 0 Formula C5H9NO3 InChIKeyhelp_outline PMMYEEVYMWASQN-DMTCNVIQSA-N SMILEShelp_outline O[C@H]1C[NH2+][C@@H](C1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline cis-4-hydroxy-D-proline Identifier CHEBI:57690 Charge 0 Formula C5H9NO3 InChIKeyhelp_outline PMMYEEVYMWASQN-QWWZWVQMSA-N SMILEShelp_outline O[C@H]1C[NH2+][C@H](C1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:21152 | RHEA:21153 | RHEA:21154 | RHEA:21155 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks.
Zhao S., Sakai A., Zhang X., Vetting M.W., Kumar R., Hillerich B., San Francisco B., Solbiati J., Steves A., Brown S., Akiva E., Barber A., Seidel R.D., Babbitt P.C., Almo S.C., Gerlt J.A., Jacobson M.P.
Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables la ... >> More
Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins in 12 families in the PRS that represent ∼85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks3 and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes. << Less
Elife 3:E03275-E03275(2014) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Kinetic and structural studies of hydroxyproline 2-epimerase.
Finlay T.H., Adams E.
-
Molecular and structural discrimination of proline racemase and hydroxyproline-2-epimerase from nosocomial and bacterial pathogens.
Goytia M., Chamond N., Cosson A., Coatnoan N., Hermant D., Berneman A., Minoprio P.
The first eukaryotic proline racemase (PRAC), isolated from the human Trypanosoma cruzi pathogen, is a validated therapeutic target against Chagas' disease. This essential enzyme is implicated in parasite life cycle and infectivity and its ability to trigger host B-cell nonspecific hypergammaglobu ... >> More
The first eukaryotic proline racemase (PRAC), isolated from the human Trypanosoma cruzi pathogen, is a validated therapeutic target against Chagas' disease. This essential enzyme is implicated in parasite life cycle and infectivity and its ability to trigger host B-cell nonspecific hypergammaglobulinemia contributes to parasite evasion and persistence. Using previously identified PRAC signatures and data mining we present the identification and characterization of a novel PRAC and five hydroxyproline epimerases (HyPRE) from pathogenic bacteria. Single-mutation of key HyPRE catalytic cysteine abrogates enzymatic activity supporting the presence of two reaction centers per homodimer. Furthermore, evidences are provided that Brucella abortus PrpA [for 'proline racemase' virulence factor A] and homologous proteins from two Brucella spp are bona fide HyPREs and not 'one way' directional PRACs as described elsewhere. Although the mechanisms of aminoacid racemization and epimerization are conserved between PRAC and HyPRE, our studies demonstrate that substrate accessibility and specificity partly rely on constraints imposed by aromatic or aliphatic residues distinctively belonging to the catalytic pockets. Analysis of PRAC and HyPRE sequences along with reaction center structural data disclose additional valuable elements for in silico discrimination of the enzymes. Furthermore, similarly to PRAC, the lymphocyte mitogenicity displayed by HyPREs is discussed in the context of bacterial metabolism and pathogenesis. Considering tissue specificity and tropism of infectious pathogens, it would not be surprising if upon infection PRAC and HyPRE play important roles in the regulation of the intracellular and extracellular amino acid pool profiting the microrganism with precursors and enzymatic pathways of the host. << Less
PLoS ONE 2:E885-E885(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Determination of 4-hydroxyproline-2-epimerase activity by capillary electrophoresis: A stereoselective platform for inhibitor screening of amino acid isomerases.
Gavina J.M., White C.E., Finan T.M., Britz-McKibbin P.
Isomerases involved in the metabolism of D/L-amino acids represent promising therapeutic targets for treatment of disease. Herein, we report a tunable platform for the assessment of enzymatic kinetics involving amino acid isomerization by CE that offers improved selectivity and sensitivity over tr ... >> More
Isomerases involved in the metabolism of D/L-amino acids represent promising therapeutic targets for treatment of disease. Herein, we report a tunable platform for the assessment of enzymatic kinetics involving amino acid isomerization by CE that offers improved selectivity and sensitivity over traditional methods. Enzyme activity and competition assays were evaluated for various hydroxyproline diastereoisomers, proline enantiomers and their structural analogs using 4-hydroxyproline-2-epimerase as a model system. In this work, pyrrole 2-carboxylic acid was found to be a selective inhibitor of 4-hydroxyproline-2-epimerase with a half-maximal inhibition concentration of (2.3 + or - 0.1) mM. Reliable methods for unambiguous characterization of amino acid isomerases are required for the screening of novel inhibitors with epimerase and/or racemase activity. << Less