Reaction participants Show >> << Hide
- Name help_outline D-maltose Identifier CHEBI:17306 (Beilstein: 1292747; CAS: 69-79-4) help_outline Charge 0 Formula C12H22O11 InChIKeyhelp_outline GUBGYTABKSRVRQ-PICCSMPSSA-N SMILEShelp_outline OC[C@H]1O[C@H](O[C@@H]2[C@@H](CO)OC(O)[C@H](O)[C@H]2O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline β-D-glucose 1-phosphate Identifier CHEBI:57684 (Beilstein: 1688547) help_outline Charge -2 Formula C6H11O9P InChIKeyhelp_outline HXXFSFRBOHSIMQ-DVKNGEFBSA-L SMILEShelp_outline OC[C@H]1O[C@@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-glucose Identifier CHEBI:4167 (Beilstein: 1281604; CAS: 2280-44-6) help_outline Charge 0 Formula C6H12O6 InChIKeyhelp_outline WQZGKKKJIJFFOK-GASJEMHNSA-N SMILEShelp_outline OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 161 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:21116 | RHEA:21117 | RHEA:21118 | RHEA:21119 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Identification of Bacillus selenitireducens MLS10 maltose phosphorylase possessing synthetic ability for branched alpha-D-glucosyl trisaccharides.
Nihira T., Saito Y., Kitaoka M., Otsubo K., Nakai H.
We discovered an inverting maltose phosphorylase (Bsel2056) belonging to glycoside hydrolase family 65 from Bacillus selenitireducens MLS10, which possesses synthetic ability for α-D-glucosyl disaccharides and trisaccharides through the reverse phosphorolysis with β-D-glucose 1-phosphate as the do ... >> More
We discovered an inverting maltose phosphorylase (Bsel2056) belonging to glycoside hydrolase family 65 from Bacillus selenitireducens MLS10, which possesses synthetic ability for α-D-glucosyl disaccharides and trisaccharides through the reverse phosphorolysis with β-D-glucose 1-phosphate as the donor. Bsel2056 showed the flexibility for monosaccharide acceptors with alternative C2 substituent (2-amino-2-deoxy-D-glucose, 2-deoxy-D-arabino-hexose, 2-acetamido-2-deoxy-D-glucose, D-mannose), resulting in production of 1,4-α-D-glucosyl disaccharides with strict regioselectivity. In addition, Bsel2056 synthesized two maltose derivatives possessing additional D-glucosyl residue bound to C2 position of the D-glucose residue at the reducing end, 1,4-α-D-glucopyranosyl-[1,2-α-D-glucopyranosyl]-D-glucose and 1,4-α-D-glucopyranosyl-[1,2-β-D-glucopyranosyl]-D-glucose, from 1,2-α-D-glucopyranosyl-D-glucose (kojibiose) and 1,2-β-D-glucopyranosyl-D-glucose (sophorose), respectively, as the acceptors. These results suggested that Bsel2056 possessed a binding space to accommodate the bulky C2 substituent of D-glucose. << Less
-
Phosphorolysis of maltose by enzyme preparations from Neisseria meningitidis.
FITTING C., DOUDOROFF M.
-
Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose 6'-phosphate phosphatase (MapP).
Mokhtari A., Blancato V.S., Repizo G.D., Henry C., Pikis A., Bourand A., de Fatima Alvarez M., Immel S., Mechakra-Maza A., Hartke A., Thompson J., Magni C., Deutscher J.
Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-α-glucosidas ... >> More
Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-α-glucosidase, which in B. subtilis hydrolyses maltose 6'-P into glucose and glucose 6-P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose 6-P into glucose 1-P and glucose 6-P. However, purified MalP phosphorolyses maltose but not maltose 6'-P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose 6'-P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose 1-P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose 6'-P restored growth on maltose. MapP catalyses the dephosphorylation of intracellular maltose 6'-P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose 1-P. MapP therefore connects PTS-mediated maltose uptake to maltose phosphorylase-catalysed metabolism. Dephosphorylation assays with a wide variety of phospho-substrates revealed that MapP preferably dephosphorylates disaccharides containing an O-α-glycosyl linkage. << Less
Mol. Microbiol. 88:234-253(2013) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Substrate-induced activation of maltose phosphorylase: interaction with the anomeric hydroxyl group of alpha-maltose and alpha-D-glucose controls the enzyme's glucosyltransferase activity.
Tsumuraya Y., Brewer C.F., Hehre E.J.
Maltose phosphorylase, long considered strictly specific for beta-D-glucopyranosyl phosphate (beta-D-glucose 1-P), was found to catalyze the reaction beta-D-glucosyl fluoride + alpha-D-glucose----alpha-maltose + HF, at a rapid rate, V = 11.2 +/- 1.2 mumol/(min.mg), and K = 13.1 +/-4.4 mM with alph ... >> More
Maltose phosphorylase, long considered strictly specific for beta-D-glucopyranosyl phosphate (beta-D-glucose 1-P), was found to catalyze the reaction beta-D-glucosyl fluoride + alpha-D-glucose----alpha-maltose + HF, at a rapid rate, V = 11.2 +/- 1.2 mumol/(min.mg), and K = 13.1 +/-4.4 mM with alpha-D-glucose saturating, at 0 degrees C. This reaction is analogous to the synthesis of maltose from beta-D-glucose 1-P + D-glucose (the reverse of maltose phosphorolysis). In acting upon beta-D-glucosyl fluoride, maltose phosphorylase was found to use alpha-D-glucose as a cosubstrate but not beta-D-glucose or other close analogs (e.g., alpha-D-glucosyl fluoride) lacking an axial 1-OH group. Similarly, the enzyme was shown to use alpha-maltose as a substrate but not beta-maltose or close analogs (e.g., alpha-maltosyl fluoride) lacking an axial 1-OH group. These results indicate that interaction of the axial 1-OH group of the disaccharide donor or sugar acceptor with a particular protein group near the reaction center is required for effective catalysis. This interaction appears to be the means that leads maltose phosphorylase to promote a narrowly defined set of glucosyl transfer reactions with little hydrolysis, in contrast to other glycosylases that catalyze both hydrolytic and nonhydrolytic reactions. << Less