Enzymes
UniProtKB help_outline | 10 proteins |
Reaction participants Show >> << Hide
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 352 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
an N-terminal L-α-aminoacyl-[protein]
Identifier
RHEA-COMP:10636
Reactive part
help_outline
- Name help_outline N-terminal L-α-amino-acid residue Identifier CHEBI:78597 Charge 1 Formula C2H4NOR SMILEShelp_outline [NH3+][C@@H]([*])C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 14 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N-terminal Nα-acetyl-L-α-aminoacyl-[protein]
Identifier
RHEA-COMP:15589
Reactive part
help_outline
- Name help_outline N-terminal Nα-acetyl-L-amino-acid residue Identifier CHEBI:78598 Charge 0 Formula C4H5NO2R SMILEShelp_outline CC(=O)N[C@@H]([*])C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:21028 | RHEA:21029 | RHEA:21030 | RHEA:21031 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
The mechanism of N-terminal acetylation of proteins.
Driessen H.P., de Jong W.W., Tesser G.I., Bloemendal H.
N alpha-acetylation is almost exclusively restricted to eukaryotic structural proteins. As a rule it is a post-initiational process, requiring the presence of the enzyme N alpha-acetyltransferase and the acetyl donor acetylcoenzyme A. N alpha-acetyltransferases appear to have a narrow substrate sp ... >> More
N alpha-acetylation is almost exclusively restricted to eukaryotic structural proteins. As a rule it is a post-initiational process, requiring the presence of the enzyme N alpha-acetyltransferase and the acetyl donor acetylcoenzyme A. N alpha-acetyltransferases appear to have a narrow substrate specificity, which is very similar for enzymes from different tissues and species. Amino acids predominantly present at the N terminus of N alpha-acetylated proteins are alanine, serine, and methionine. The occurrence of these residues is apparently a prerequisite for acetylation. The region following these amino acids is also important. If methionine is at the N terminus, the second position is always occupied by a strongly hydrophilic amino acid. Two- and three-dimensional structural characteristics of the protein do not seem to play a major role in N alpha-acetylation. Up to now the exact function for N alpha-acetylation is not known. << Less
-
Spotlight on protein N-terminal acetylation.
Ree R., Varland S., Arnesen T.
N-terminal acetylation (Nt-acetylation) is a widespread protein modification among eukaryotes and prokaryotes alike. By appending an acetyl group to the N-terminal amino group, the charge, hydrophobicity, and size of the N-terminus is altered in an irreversible manner. This alteration has implicat ... >> More
N-terminal acetylation (Nt-acetylation) is a widespread protein modification among eukaryotes and prokaryotes alike. By appending an acetyl group to the N-terminal amino group, the charge, hydrophobicity, and size of the N-terminus is altered in an irreversible manner. This alteration has implications for the lifespan, folding characteristics and binding properties of the acetylated protein. The enzymatic machinery responsible for Nt-acetylation has been largely described, but significant knowledge gaps remain. In this review, we provide an overview of eukaryotic N-terminal acetyltransferases (NATs) and the impact of Nt-acetylation. We also discuss other functions of known NATs and outline methods for studying Nt-acetylation. << Less
Exp Mol Med 50:1-13(2018) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Characterization of the peptide acetyltransferase activity in bovine and rat intermediate pituitaries responsible for the acetylation of beta-endorphin and alpha-melanotropin.
Glembotski C.C.