Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 508 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20988 | RHEA:20989 | RHEA:20990 | RHEA:20991 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Gene ytkD of Bacillus subtilis encodes an atypical nucleoside triphosphatase member of the Nudix hydrolase superfamily.
Xu W., Jones C.R., Dunn C.A., Bessman M.J.
Gene ytkD of Bacillus subtilis, a member of the Nudix hydrolase superfamily, has been cloned and expressed in Escherichia coli. The purified protein has been characterized as a nucleoside triphosphatase active on all of the canonical ribo- and deoxyribonucleoside triphosphates. Whereas all other n ... >> More
Gene ytkD of Bacillus subtilis, a member of the Nudix hydrolase superfamily, has been cloned and expressed in Escherichia coli. The purified protein has been characterized as a nucleoside triphosphatase active on all of the canonical ribo- and deoxyribonucleoside triphosphates. Whereas all other nucleoside triphosphatase members of the superfamily release inorganic pyrophosphate and the cognate nucleoside monophosphate, YtkD hydrolyses nucleoside triphosphates in a stepwise fashion through the diphosphate to the monophosphate, releasing two molecules of inorganic orthophosphate. Contrary to a previous report, our enzymological and genetic studies indicate that ytkD is not an orthologue of E. coli mutT. << Less
J. Bacteriol. 186:8380-8384(2004) [PubMed] [EuropePMC]
This publication is cited by 32 other entries.
-
Purification and properties of human placental ATP diphosphohydrolase.
Christoforidis S., Papamarcaki T., Galaris D., Kellner R., Tsolas O.
ATP diphosphohydrolase activity (ATP-DPH) has been previously identified in the particulate fraction of human term placenta [Papamarcaki, T. & Tsolas, O. (1990) Mol. Cell. Biochem. 97, 1-8]. In the present study we have purified to homogeneity and characterized this activity. A 260-fold purificati ... >> More
ATP diphosphohydrolase activity (ATP-DPH) has been previously identified in the particulate fraction of human term placenta [Papamarcaki, T. & Tsolas, O. (1990) Mol. Cell. Biochem. 97, 1-8]. In the present study we have purified to homogeneity and characterized this activity. A 260-fold purification has been obtained by solubilization of the particulate fraction and subsequent chromatography on DEAE Sepharose CL-6B and 5'-AMP Sepharose 4B. The preparation has been shown to be free of alkaline phosphatase even though the placental extract is rich in this activity. The purified enzyme is a glycoprotein and migrates as a single broad band of 82 kDa on SDS/PAGE. The same band is obtained after photoaffinity labeling of the enzyme with 8-azido-[alpha-32P]ATP. The enzyme has a broad substrate specificity, hydrolyzing triphosphonucleosides and diphosphonucleosides but not monophosphonucleosides or other phosphate esters. The activity is dependent on the addition of divalent cations Ca2+ or Mg2+. The Km values for ATP and ADP were determined to be 10 microM and 20 microM, respectively. Maximum activity was found at pH 7.0-7.5 with ATP as substrate, and pH 7.5-8.0 with ADP. The enzymic activity is inhibited by NaN3, NaF, adenosine 5'-[beta,gamma-imido]triphosphate and adenosine 5'-[alpha,beta-methylene]triphosphate. Protein sequence analysis showed ATP-DPH to be N-terminally blocked. Partial internal amino acid sequence information was obtained after chymotryptic cleavage and identified a unique sequence with no significant similarity to known proteins. ATP-DPH activity has been reported to be implicated in the prevention of platelet aggregation, hydrolysing ADP to AMP and thus preventing blood clotting. << Less
Eur. J. Biochem. 234:66-74(1995) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.
Comments
Multi-step reaction: RHEA:13065 and RHEA:61436.