Enzymes
UniProtKB help_outline | 10 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline a sphingomyelin Identifier CHEBI:17636 Charge 0 Formula C24H48N2O6PR SMILEShelp_outline O=P(OCC[N+](C)(C)C)(OC[C@H](NC(*)=O)[C@@H](/C=C/CCCCCCCCCCCCC)O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 16 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an N-acylsphing-4-enine 1-phosphate Identifier CHEBI:57674 Charge -2 Formula C19H35NO6PR SMILEShelp_outline CCCCCCCCCCCCC\C=C\[C@@H](O)[C@H](COP([O-])([O-])=O)NC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline choline Identifier CHEBI:15354 (Beilstein: 1736748; CAS: 62-49-7) help_outline Charge 1 Formula C5H14NO InChIKeyhelp_outline OEYIOHPDSNJKLS-UHFFFAOYSA-N SMILEShelp_outline C[N+](C)(C)CCO 2D coordinates Mol file for the small molecule Search links Involved in 56 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20984 | RHEA:20985 | RHEA:20986 | RHEA:20987 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Identification of new sphingomyelinases D in pathogenic fungi and other pathogenic organisms.
Dias-Lopes C., Neshich I.A., Neshich G., Ortega J.M., Granier C., Chavez-Olortegui C., Molina F., Felicori L.
Sphingomyelinases D (SMases D) or dermonecrotic toxins are well characterized in Loxosceles spider venoms and have been described in some strains of pathogenic microorganisms, such as Corynebacterium sp. After spider bites, the SMase D molecules cause skin necrosis and occasional severe systemic m ... >> More
Sphingomyelinases D (SMases D) or dermonecrotic toxins are well characterized in Loxosceles spider venoms and have been described in some strains of pathogenic microorganisms, such as Corynebacterium sp. After spider bites, the SMase D molecules cause skin necrosis and occasional severe systemic manifestations, such as acute renal failure. In this paper, we identified new SMase D amino acid sequences from various organisms belonging to 24 distinct genera, of which, 19 are new. These SMases D share a conserved active site and a C-terminal motif. We suggest that the C-terminal tail is responsible for stabilizing the entire internal structure of the SMase D Tim barrel and that it can be considered an SMase D hallmark in combination with the amino acid residues from the active site. Most of these enzyme sequences were discovered from fungi and the SMase D activity was experimentally confirmed in the fungus Aspergillus flavus. Because most of these novel SMases D are from organisms that are endowed with pathogenic properties similar to those evoked by these enzymes alone, they might be associated with their pathogenic mechanisms. << Less
-
Identification and characterization of a new enzyme of the group "phospholipase D" isolated from Corynebacterium ovis.
Soucek A., Michalec C., Souckova A.
-
Action of Corynebacterium ovis exotoxin on endothelial cells of blood vessels.
Carne H.R., Onon E.O.
-
Spider and bacterial sphingomyelinases D target cellular lysophosphatidic acid receptors by hydrolyzing lysophosphatidylcholine.
van Meeteren L.A., Frederiks F., Giepmans B.N., Pedrosa M.F., Billington S.J., Jost B.H., Tambourgi D.V., Moolenaar W.H.
Bites by Loxosceles spiders can produce severe clinical symptoms, including dermonecrosis, thrombosis, vascular leakage, hemolysis, and persistent inflammation. The causative factor is a sphingomyelinase D (SMaseD) that cleaves sphingomyelin into choline and ceramide 1-phosphate. A similar enzyme, ... >> More
Bites by Loxosceles spiders can produce severe clinical symptoms, including dermonecrosis, thrombosis, vascular leakage, hemolysis, and persistent inflammation. The causative factor is a sphingomyelinase D (SMaseD) that cleaves sphingomyelin into choline and ceramide 1-phosphate. A similar enzyme, showing comparable bioactivity, is secreted by certain pathogenic corynebacteria and acts as a potent virulence factor. However, the molecular basis for SMaseD toxicity is not well understood, which hampers effective therapy. Here we show that the spider and bacterial SMases D hydrolyze albumin-bound lysophosphatidylcholine (LPC), but not sphingosylphosphorylcholine, with K(m) values ( approximately 20-40 microm) well below the normal LPC levels in blood. Thus, toxic SMases D have intrinsic lysophospholipase D activity toward LPC. LPC hydrolysis yields the lipid mediator lysophosphatidic acid (LPA), a known inducer of platelet aggregation, endothelial hyperpermeability, and pro-inflammatory responses. Introduction of LPA(1) receptor cDNA into LPA receptor-negative cells renders non-susceptible cells susceptible to SmaseD, but only in LPC-containing media. Degradation of circulating LPC to LPA with consequent activation of LPA receptors may have a previously unappreciated role in the pathophysiology of secreted SMases D. << Less