Reaction participants Show >> << Hide
- Name help_outline 2-phenylacetate Identifier CHEBI:18401 Charge -1 Formula C8H7O2 InChIKeyhelp_outline WLJVXDMOQOGPHL-UHFFFAOYSA-M SMILEShelp_outline [O-]C(=O)Cc1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phenylacetyl-CoA Identifier CHEBI:57390 Charge -4 Formula C29H38N7O17P3S InChIKeyhelp_outline ZIGIFDRJFZYEEQ-CECATXLMSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)Cc1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 512 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20956 | RHEA:20957 | RHEA:20958 | RHEA:20959 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
An indoleacetate-CoA ligase and a phenylsuccinyl-CoA transferase involved in anaerobic metabolism of auxin.
Schuehle K., Nies J., Heider J.
The plant hormone auxin (indoleacetate) is anaerobically degraded by the Betaproteobacterium Aromatoleum aromaticum. We report here on a CoA ligase (IaaB) and a CoA-transferase (IaaL) which are encoded in the apparent substrate-induced iaa operon containing genes for indoleacetate degradation. Iaa ... >> More
The plant hormone auxin (indoleacetate) is anaerobically degraded by the Betaproteobacterium Aromatoleum aromaticum. We report here on a CoA ligase (IaaB) and a CoA-transferase (IaaL) which are encoded in the apparent substrate-induced iaa operon containing genes for indoleacetate degradation. IaaB is a highly specific indoleacetate-CoA ligase which activates indoleacetate to the CoA-thioester immediately after uptake into the cytoplasm. This enzyme only activates indoleacetate and some closely related compounds such as naphthylacetate, phenylacetate and indolepropionate, and is inhibited by high concentrations of substrates, and by the synthetic auxin compound 2,4-dichlorophenoxyacetate, which does not serve as substrate. IaaL is a CoA-transferase recognizing several C4-dicarboxylic acids, such as succinate, phenylsuccinate or benzylsuccinate and their CoA-thioesters, but only few monocarboxylic acids and no C3-dicarboxylic acids such as benzylmalonate. The enzyme shows no stereospecific discrimation of the benzylsuccinate enantiomers. Moreover, benzylsuccinate is regiospecifically activated to 2-benzylsuccinyl-CoA, whereas phenylsuccinate is converted to an equal mixture of both regioisomers (2- and 3-phenylsuccinyl-CoA). The identification of these two enzymes allows us to set up a modified version of the metabolic pathway of anaerobic indoleacetate degradation and to investigate the sequences databases for the occurrence and distribution of this pathway in other microorgansisms. << Less
Environ. Microbiol. 18:3120-3132(2016) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.
-
Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid.
Martinez-Blanco H., Reglero A., Rodriguez-Aparicio L.B., Luengo J.M.
A new enzyme, phenylacetyl-CoA ligase (AMP-forming) (PA-CoA ligase, EC 6.2.1-) involved in the catabolism of phenylacetic acid (PAA) in Pseudomonas putida is described and characterized. PA-CoA ligase was specifically induced by PAA when P. putida was grown in a chemically defined medium in which ... >> More
A new enzyme, phenylacetyl-CoA ligase (AMP-forming) (PA-CoA ligase, EC 6.2.1-) involved in the catabolism of phenylacetic acid (PAA) in Pseudomonas putida is described and characterized. PA-CoA ligase was specifically induced by PAA when P. putida was grown in a chemically defined medium in which phenylacetic acid was the sole carbon source. Hydroxyl, methyl-phenylacetyl derivatives, and other PAA close structural molecules did not induce the synthesis of this enzyme and neither did acetic, butyric, succinic, nor fatty acids (greater than C5 atoms carbon length). PA-CoA ligase requires ATP, CoA, PAA, and MgCl2 for its activity. The maximal rate of catalysis was achieved in 50 mM HCl/Tris buffer, pH 8.2, at 30 degrees C and under these conditions, the Km calculated for ATP, CoA, and PAA were 9.7, 1.0, and 16.5 mM, respectively. The enzyme is inhibited by some divalent cations (Cu2+, Zn2+, and Hg2+) and by the sulfhydryl reagents N-ethylmaleimide, 5,5'-dithiobis(2-nitrobenzoic acid), and p-chloromercuribenzoate. PA-CoA ligase was purified to homogeneity (513-fold). It runs as a single polypeptide in 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and has a molecular mass of 48 +/-1 kDa. PA-CoA ligase does not use as substrate either 3-hydroxyphenylacetic, 4-hydroxyphenylacetic, or 3,4-dihydroxyphenylacetic acids and shows a substrate specificity different from other acyl-CoA-activating enzymes. The enzyme is detected in P. putida from the early logarithmic phase of growth and is repressed by glucose, suggesting that PA-CoA ligase is a specific enzyme involved in the utilization of PAA as energy source. << Less
-
Phenylacetate metabolism in thermophiles: characterization of phenylacetate-CoA ligase, the initial enzyme of the hybrid pathway in Thermus thermophilus.
Erb T.J., Ismail W., Fuchs G.
Phenylacetate-CoA ligase (E.C. 6.2.1.30), the initial enzyme in the metabolism of phenylacetate, was studied in Thermus thermophilus strain HB27. Enzymatic activity was upregulated during growth on phenylacetate or phenylalanine. The phenylacetate-CoA ligase gene (paaK) was cloned and heterologous ... >> More
Phenylacetate-CoA ligase (E.C. 6.2.1.30), the initial enzyme in the metabolism of phenylacetate, was studied in Thermus thermophilus strain HB27. Enzymatic activity was upregulated during growth on phenylacetate or phenylalanine. The phenylacetate-CoA ligase gene (paaK) was cloned and heterologously expressed in Escherichia coli and the recombinant protein was purified. The enzyme catalyzed phenylacetate + CoA + MgATP --> phenylacetyl-CoA + AMP + MgPP(i) with a V(max) of 24 micromol/min/mg protein at a temperature optimum of 75 degrees C. The apparent K(m) values for ATP, CoA, and phenylacetate were 6, 30, and 50 microM: , respectively. The protein was highly specific toward phenylacetate and showed only low activity with 4-hydroxyphenylacetate. Despite an amino acid sequence identity of >50% with its mesophilic homologues, phenylacetate-CoA ligase was heat stable. The genome contained further homologues of genes, which are postulated to be involved in the CoA ester-dependent metabolic pathway of phenylacetate (hybrid pathway). Enzymes of this thermophile are expected to be robust and might be useful for further studies of this yet unresolved pathway. << Less
-
Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway.
Ferrandez A., Minambres B., Garcia B., Olivera E.R., Luengo J.M., Garcia J.L., Diaz E.
The paa cluster of Escherichia coli W involved in the aerobic catabolism of phenylacetic acid (PA) has been cloned and sequenced. It was shown to map at min 31.0 of the chromosome at the right end of the mao region responsible for the transformation of 2-phenylethylamine into PA. The 14 paa genes ... >> More
The paa cluster of Escherichia coli W involved in the aerobic catabolism of phenylacetic acid (PA) has been cloned and sequenced. It was shown to map at min 31.0 of the chromosome at the right end of the mao region responsible for the transformation of 2-phenylethylamine into PA. The 14 paa genes are organized in three transcription units: paaZ and paaABCDEFGHIJK, encoding catabolic genes; and paaXY, containing the paaX regulatory gene. The paaK gene codes for a phenylacetyl-CoA ligase that catalyzes the activation of PA to phenylacetyl-CoA (PA-CoA). The paaABCDE gene products, which may constitute a multicomponent oxygenase, are involved in PA-CoA hydroxylation. The PaaZ protein appears to catalyze the third enzymatic step, with the paaFGHIJ gene products, which show significant similarity to fatty acid beta-oxidation enzymes, likely involved in further mineralization to Krebs cycle intermediates. Three promoters, Pz, Pa, and Px, driven the expression of genes paaZ, paaABCDEFGHIJK, and paaX, respectively, have been identified. The Pa promoter is negatively controlled by the paaX gene product. As PA-CoA is the true inducer, PaaX becomes the first regulator of an aromatic catabolic pathway that responds to a CoA derivative. The aerobic catabolism of PA in E. coli represents a novel hybrid pathway that could be a widespread way of PA catabolism in bacteria. << Less
J. Biol. Chem. 273:25974-25986(1998) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Biochemical and molecular characterization of phenylacetate-coenzyme A ligase, an enzyme catalyzing the first step in aerobic metabolism of phenylacetic acid in Azoarcus evansii.
Mohamed M.E.
Phenylacetate-coenzyme A ligase (PA-CoA ligase; AMP forming, EC 6.2. 1.30), the enzyme catalyzing the first step in the aerobic degradation of phenylacetate (PA) in Azoarcus evansii, has been purified and characterized. The gene (paaK) coding for this enzyme was cloned and sequenced. The enzyme ca ... >> More
Phenylacetate-coenzyme A ligase (PA-CoA ligase; AMP forming, EC 6.2. 1.30), the enzyme catalyzing the first step in the aerobic degradation of phenylacetate (PA) in Azoarcus evansii, has been purified and characterized. The gene (paaK) coding for this enzyme was cloned and sequenced. The enzyme catalyzes the reaction of PA with CoA and MgATP to yield phenylacetyl-CoA (PACoA) plus AMP plus PPi. The enzyme was specifically induced after aerobic growth in a chemically defined medium containing PA or phenylalanine (Phe) as the sole carbon source. Growth with 4-hydroxyphenylacetate, benzoate, adipate, or acetate did not induce the synthesis of this enzyme. This enzymatic activity was detected very early in the exponential phase of growth, and a maximal specific activity of 76 nmol min(-1) mg of cell protein(-1) was measured. After 117-fold purification to homogeneity, a specific activity of 48 micromol min(-1) mg of protein(-1) was achieved with a turnover number (catalytic constant) of 40 s(-1). The protein is a monomer of 52 kDa and shows high specificity towards PA; other aromatic or aliphatic acids were not used as substrates. The apparent K(m) values for PA, ATP, and CoA were 14, 60, and 45 microM, respectively. The PA-CoA ligase has an optimum pH of 8 to 8.5 and a pI of 6.3. The enzyme is labile and requires the presence of glycerol for stabilization. The N-terminal amino acid sequence of the purified protein showed no homology with other reported PA-CoA ligases. The gene encoding this enzyme is 1, 320 bp long and codes for a protein of 48.75 kDa (440 amino acids) which shows high similarity with other reported PA-CoA ligases. An amino acid consensus for an AMP binding motif (VX2SSGTTGXP) was identified. The biochemical and molecular characteristics of this enzyme are quite different from those of the isoenzyme catalyzing the same reaction under anaerobic conditions in the same bacterium. << Less
-
Bacterial phenylalanine and phenylacetate catabolic pathway revealed.
Teufel R., Mascaraque V., Ismail W., Voss M., Perera J., Eisenreich W., Haehnel W., Fuchs G.
Aromatic compounds constitute the second most abundant class of organic substrates and environmental pollutants, a substantial part of which (e.g., phenylalanine or styrene) is metabolized by bacteria via phenylacetate. Surprisingly, the bacterial catabolism of phenylalanine and phenylacetate rema ... >> More
Aromatic compounds constitute the second most abundant class of organic substrates and environmental pollutants, a substantial part of which (e.g., phenylalanine or styrene) is metabolized by bacteria via phenylacetate. Surprisingly, the bacterial catabolism of phenylalanine and phenylacetate remained an unsolved problem. Although a phenylacetate metabolic gene cluster had been identified, the underlying biochemistry remained largely unknown. Here we elucidate the catabolic pathway functioning in 16% of all bacteria whose genome has been sequenced, including Escherichia coli and Pseudomonas putida. This strategy is exceptional in several aspects. Intermediates are processed as CoA thioesters, and the aromatic ring of phenylacetyl-CoA becomes activated to a ring 1,2-epoxide by a distinct multicomponent oxygenase. The reactive nonaromatic epoxide is isomerized to a seven-member O-heterocyclic enol ether, an oxepin. This isomerization is followed by hydrolytic ring cleavage and beta-oxidation steps, leading to acetyl-CoA and succinyl-CoA. This widespread paradigm differs significantly from the established chemistry of aerobic aromatic catabolism, thus widening our view of how organisms exploit such inert substrates. It provides insight into the natural remediation of man-made environmental contaminants such as styrene. Furthermore, this pathway occurs in various pathogens, where its reactive early intermediates may contribute to virulence. << Less
Proc. Natl. Acad. Sci. U.S.A. 107:14390-14395(2010) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Aryl Coenzyme A Ligases, a Subfamily of the Adenylate-Forming Enzyme Superfamily.
Arnold M.E., Kaplieva-Dudek I., Heker I., Meckenstock R.U.
Aryl coenzyme A (CoA) ligases belong to class I of the adenylate-forming enzyme superfamily (ANL superfamily). They catalyze the formation of thioester bonds between aromatic compounds and CoA and occur in nearly all forms of life. These ligases are involved in various metabolic pathways degrading ... >> More
Aryl coenzyme A (CoA) ligases belong to class I of the adenylate-forming enzyme superfamily (ANL superfamily). They catalyze the formation of thioester bonds between aromatic compounds and CoA and occur in nearly all forms of life. These ligases are involved in various metabolic pathways degrading benzene, toluene, ethylbenzene, and xylene (BTEX) or polycyclic aromatic hydrocarbons (PAHs). They are often necessary to produce the central intermediate benzoyl-CoA that occurs in various anaerobic pathways. The substrate specificity is very diverse between enzymes within the same class, while the dependency on Mg<sup>2+</sup>, ATP, and CoA as well as oxygen insensitivity are characteristics shared by the whole enzyme class. Some organisms employ the same aryl-CoA ligase when growing aerobically and anaerobically, while others induce different enzymes depending on the environmental conditions. Aryl-CoA ligases can be divided into two major groups, benzoate:CoA ligase-like enzymes and phenylacetate:CoA ligase-like enzymes. They are widely distributed between the phylogenetic clades of the ANL superfamily and show closer relationships within the subfamilies than to other aryl-CoA ligases. This, together with residual CoA ligase activity in various other enzymes of the ANL superfamily, leads to the conclusion that CoA ligases might be the ancestral proteins from which all other ANL superfamily enzymes developed. << Less
Appl Environ Microbiol 87:e0069021-e0069021(2021) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
Comments
Mutli-step reaction: RHEA:69727 and RHEA:69731