Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline L-galactono-1,4-lactone Identifier CHEBI:17464 (CAS: 1668-08-2) help_outline Charge 0 Formula C6H10O6 InChIKeyhelp_outline SXZYCXMUPBBULW-NEEWWZBLSA-N SMILEShelp_outline [H][C@@]1(OC(=O)[C@@H](O)[C@@H]1O)[C@@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 449 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-ascorbate Identifier CHEBI:38290 (Beilstein: 3549814; CAS: 299-36-5) help_outline Charge -1 Formula C6H7O6 InChIKeyhelp_outline CIWBSHSKHKDKBQ-JLAZNSOCSA-M SMILEShelp_outline [H][C@@]1(OC(=O)C(O)=C1[O-])[C@@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 34 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20617 | RHEA:20618 | RHEA:20619 | RHEA:20620 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Characterisation of D-arabinono-1,4-lactone oxidase from Candida albicans ATCC 10231.
Huh W.K., Kim S.T., Yang K.S., Seok Y.J., Hah Y.C., Kang S.O.
D-Erythroascorbic acid was detected from the cell extracts of a dimorphic fungus, Candida albicans. Its concentration in yeast cells grown at 25 degrees C was estimated to be about 0.45 mumol/ml cell water. D-Arabinono-1,4-lactone oxidase, which catalyses the final step in the biosynthesis of D-er ... >> More
D-Erythroascorbic acid was detected from the cell extracts of a dimorphic fungus, Candida albicans. Its concentration in yeast cells grown at 25 degrees C was estimated to be about 0.45 mumol/ml cell water. D-Arabinono-1,4-lactone oxidase, which catalyses the final step in the biosynthesis of D-erythroascorbic acid, was purified 639-fold from the mitochondrial fraction of C. albicans to apparent homogeneity, with an overall yield of 21.2%, by a purification procedure consisting of Triton X-100 solubilisation, ammonium sulphate precipitation, anion-exchange, hydrophobic-interaction, gel-filtration and dye-ligand chromatographies. Gel-filtration chromatography and polyacrylamide-gradient gel electrophoresis in the presence of deoxycholate gave apparent molecular masses of 110 kDa and 84.4 kDa, respectively. SDS/PAGE showed only one protein band corresponding to a molecular mass of 66.7 kDa. Considering the binding of detergents, the enzyme is suggested to be a single polypeptide. The enzyme showed a typical fluorescence excitation spectrum of a flavin-containing enzyme. The flavin was not released by treatment with SDS, CCl3CO2H or boiling, indicating that it may be covalently bound to the enzyme protein. The enzyme was optimally active at 40 degrees C and at pH 6.1. The enzyme was stable in the range pH 7.5-10. An apparent Km value for D-arabinono-1,4-lactone was 44.1 mM. L-Galactono-1,4-lactone, L-gulono-1,4-lactone and L-xylono-1,4-lactone could also serve as substrates. Competitive inhibition was demonstrated with D-glucono-1,5-lactone, L-arabinono-1,4-lactone, D-galactono-1,4-lactone and D-gulono-1,4-lactone. p-Chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, iodoacetamide and divalent metal ions such as Cd2+, Hg2+, Mn2+ and Zn2+ exhibited inhibitory effects on the enzyme. << Less
Eur. J. Biochem. 225:1073-1079(1994) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Biosynthesis of ascorbate in yeast. Purification of L-galactono-1,4-lactone oxidase with properties different from mammalian L-gulonolactone oxidase.
Bleeg H.S., Christensen F.
An enzyme from Saccharomyces cerevisiae which catalyzes the reaction: L-galactonolactone + O2 leads to L-ascorbate + H2O2 has been purified 466-fold from the mitochondrial fraction of a yeast homogenate. The enzyme has several properties that are different from the L-galactonolactone oxidase descr ... >> More
An enzyme from Saccharomyces cerevisiae which catalyzes the reaction: L-galactonolactone + O2 leads to L-ascorbate + H2O2 has been purified 466-fold from the mitochondrial fraction of a yeast homogenate. The enzyme has several properties that are different from the L-galactonolactone oxidase described by Nishikimi et al. [Arch. Biochem. Biophys. 191, 479-486 (1978)]. By gel filtration in the presence of sodium deoxycholate an apparent Mr of 70 000 was obtained for the active enzyme. Polyacrylamide-gradient gel electrophoresis in the presence of deoxycholate gave an Mr of 74 000, whereas sodium dodecylsulfate/polyacrylamide gel electrophoresis showed only one protein band corresponding to an Mr of 18 000. A tetrameric structure of the enzyme is thereby suggested. The substrate specificity is confined to the aldonoacid lactones L-galactono-, D-altrono-, L-fucono-, D-arabino- and D-threono-1,4-lactones. Competitive inhibition was demonstrated with L-gulono- and D-galactono-1,4-lactones. p-Chloromercuriphenyl sulfonate, iodoacetamide, N-ethylmaleimide, sulfite and sulfide were all inhibitory to the enzyme. No effect was seen when cyanide, azide, EDTA, alpha, alpha'-bipyridyl or bathocuproine disulfonate was added. An apparent Km of 0.3 mM with L-galactonolactone as a substrate was found. The Km for oxygen was 0.18 mM. The pH/activity curve exhibited a maximum around pH 8.9 and a shoulder at pH 6.5. Evidence of a covalently bound flavin coenzyme and involvement of an iron-sulfur cluster was obtained from difference spectra of oxidized minus substrate-reduced enzyme with peaks or shoulders of the oxidized enzyme at 475, 445, 410, 375 and 350 nm. In sodium dodecylsulfate/polyacrylamide gels the enzyme subunit(s) had a bright yellow fluorescence after fixation in 7% acetic acid or 5% formaldehyde. The galactonolactone oxidase is stable with 50% activity being lost in 6 months at + 5 degrees C. << Less