Reaction participants Show >> << Hide
- Name help_outline an N-acetyl-β-D-glucosaminyl derivative Identifier CHEBI:61631 Charge 0 Formula C8H14NO6R SMILEShelp_outline O1[C@@H]([C@H]([C@@H]([C@H]([C@@H]1O*)NC(=O)C)O)O)CO 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-N-acetyl-α-D-galactosamine Identifier CHEBI:67138 Charge -2 Formula C17H25N3O17P2 InChIKeyhelp_outline LFTYTUAZOPRMMI-NESSUJCYSA-L SMILEShelp_outline CC(=O)N[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 42 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an N-acetyl-β-D-galactosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl derivative Identifier CHEBI:138027 Charge 0 Formula C16H27N2O11R SMILEShelp_outline O([C@H]1[C@@H]([C@H]([C@@H](O[C@@H]1CO)O*)NC(=O)C)O)[C@H]2[C@@H]([C@H]([C@H]([C@H](O2)CO)O)O)NC(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 576 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20493 | RHEA:20494 | RHEA:20495 | RHEA:20496 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Publications
-
Molecular cloning and characterization of a novel human beta 1,4-N-acetylgalactosaminyltransferase, beta 4GalNAc-T3, responsible for the synthesis of N,N'-diacetyllactosediamine, galNAc beta 1-4GlcNAc.
Sato T., Gotoh M., Kiyohara K., Kameyama A., Kubota T., Kikuchi N., Ishizuka Y., Iwasaki H., Togayachi A., Kudo T., Ohkura T., Nakanishi H., Narimatsu H.
We found a novel human glycosyltransferase gene carrying a hypothetical beta1,4-glycosyltransferase motif during a BLAST search, and we cloned its full-length open reading frame by using the 5'-rapid amplification of cDNA ends method. It encodes a type II transmembrane protein of 999 amino acids w ... >> More
We found a novel human glycosyltransferase gene carrying a hypothetical beta1,4-glycosyltransferase motif during a BLAST search, and we cloned its full-length open reading frame by using the 5'-rapid amplification of cDNA ends method. It encodes a type II transmembrane protein of 999 amino acids with homology to chondroitin sulfate synthase in its C-terminal region (GenBank accession number AB089940). Its putative orthologous gene was also found in mouse (accession number AB114826). The truncated form of the human enzyme was expressed in HEK293T cells as a soluble protein. The recombinant enzyme transferred GalNAc to GlcNAc beta-benzyl. The product was deduced to be GalNAc beta 1-4GlcNAc beta-benzyl based on mass spectrometry and NMR spectroscopy. We renamed the enzyme beta1,4-N-acetylgalactosaminyltransferase-III (beta 4GalNAc-T3). beta 4GalNAc-T3 effectively synthesized N,N'-diacetylgalactosediamine, GalNAc beta 1-4GlcNAc, at non-reducing termini of various acceptors derived not only from N-glycans but also from O-glycans. Quantitative real time PCR analysis showed that its transcript was highly expressed in stomach, colon, and testis. As some glycohormones contain N,N'-diacetylgalactosediamine structures in their N-glycans, we examined the ability of beta 4GalNAc-T3 to synthesize N,N'-diacetylgalactosediamine structures in N-glycans on a model protein. When fetal calf fetuin treated with neuraminidase and beta1,4-galactosidase was utilized as an acceptor protein, beta 4GalNAc-T3 transferred GalNAc to it. Furthermore, the majority of the signal from GalNAc disappeared on treatment with glycopeptidase F. These results suggest that beta 4GalNAc-T3 could transfer GalNAc residues, producing N,N'-diacetylgalactosediamine structures at least in N-glycans and probably in both N- and O-glycans. << Less
-
Molecular cloning and characterization of beta1,4-N-acetylgalactosaminyltransferases IV synthesizing N,N'-diacetyllactosediamine.
Gotoh M., Sato T., Kiyohara K., Kameyama A., Kikuchi N., Kwon Y.-D., Ishizuka Y., Iwai T., Nakanishi H., Narimatsu H.
A sequence highly homologous to beta1,4-N-acetylgalactosaminyltransferase III (beta4GalNAc-T3) was found in a database of human expressed sequence tags. The full-length open reading frame of the gene, beta4GalNAc-T4 (GenBank accession number AB089939), was cloned using the 5' rapid amplification o ... >> More
A sequence highly homologous to beta1,4-N-acetylgalactosaminyltransferase III (beta4GalNAc-T3) was found in a database of human expressed sequence tags. The full-length open reading frame of the gene, beta4GalNAc-T4 (GenBank accession number AB089939), was cloned using the 5' rapid amplification of cDNA ends method. It encodes a typical type II transmembrane protein of 1039 amino acids having 42.6% identity with beta4GalNAc-T3. The recombinant enzyme transferred N-acetylgalactosamine to N-acetylglucosamine-beta-benzyl with a beta1,4-linkage to form N,N'-diacetyllactosediamine as did beta4GalNAc-T3. In specificity toward oligosaccharide acceptor substrates, it was quite similar to beta4GalNAc-T3 in vitro, however, the tissue distributions of the two enzymes were quite different. These results indicated that the two enzymes have similar roles in different tissues. << Less