Reaction participants Show >> << Hide
- Name help_outline α-maltose 6'-phosphate Identifier CHEBI:57478 Charge -2 Formula C12H21O14P InChIKeyhelp_outline ITPHOIFCAFNCLL-ASMJPISFSA-L SMILEShelp_outline [C@H]1([C@@H]([C@H]([C@@H]([C@H](O1)CO)O[C@@H]2[C@@H]([C@H]([C@@H]([C@H](O2)COP([O-])(=O)[O-])O)O)O)O)O)O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-glucose 6-phosphate Identifier CHEBI:61548 Charge -2 Formula C6H11O9P InChIKeyhelp_outline NBSCHQHZLSJFNQ-GASJEMHNSA-L SMILEShelp_outline OC1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 32 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-glucose Identifier CHEBI:4167 (CAS: 2280-44-6) help_outline Charge 0 Formula C6H12O6 InChIKeyhelp_outline WQZGKKKJIJFFOK-GASJEMHNSA-N SMILEShelp_outline OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 162 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20421 | RHEA:20422 | RHEA:20423 | RHEA:20424 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Mechanism of GlvA from Bacillus subtilis: a detailed kinetic analysis of a 6-phospho-alpha-glucosidase from glycoside hydrolase family 4.
Yip V.L.Y., Thompson J., Withers S.G.
GlvA, a 6-phospho-alpha-glucosidase from Bacillus subtilis assigned to glycoside hydrolase family 4, catalyzes the hydrolysis of maltose 6'-phosphate via a redox-elimination-addition mechanism requiring NAD+ as cofactor. In contrast to previous reports and consistent with the proposed mechanism, G ... >> More
GlvA, a 6-phospho-alpha-glucosidase from Bacillus subtilis assigned to glycoside hydrolase family 4, catalyzes the hydrolysis of maltose 6'-phosphate via a redox-elimination-addition mechanism requiring NAD+ as cofactor. In contrast to previous reports and consistent with the proposed mechanism, GlvA is only activated in the presence of the nicotinamide cofactor in its oxidized, and not the reduced NADH, form. Significantly, GlvA catalyzes the hydrolysis of both 6-phospho-alpha- and 6-phospho-beta-glucosides containing activated leaving groups such as p-nitrophenol and does so with retention and inversion, respectively, of anomeric configuration. Mechanistic details of the individual bond cleaving and forming steps were probed using a series of 6-phospho-alpha- and 6-phospho-beta-glucosides. Primary deuterium kinetic isotope effects (KIEs) were measured for both classes of substrates in which either the C2 or the C3 protons have been substituted with a deuterium, consistent with C-H bond cleavage at each center being partially rate-limiting. Kinetic parameters were also determined for 1-[2H]-substituted substrates, and depending on the substrates and the reaction conditions, the measurements of kcat and kcat/KM produced either no KIEs or inverse KIEs. In conjunction with results of Brønsted analyses with both aryl 6-phospho-alpha- and beta-glucosides, the kinetic data suggest that GlvA utilizes an E1cb mechanism analogous to that proposed for the Thermotoga maritima BglT, a 6-phospho-beta-glucosidase in glycoside hydrolase family 4 (Yip, V.L.Y et al. (2006) Biochemistry 45, 571-580). The pattern of isotope effects measured and the observation of very similar kcat values for all substrates, including unactivated and natural substrates, indicate that the oxidation and deprotonation steps are rate-limiting steps in essentially all cases. This mechanism permits the cleavage of both alpha- and beta-glycosides within the same active site motif and, for activated substrates that do not require acid catalysis for cleavage, within the same active site, yielding the product sugar-6-phosphate in the same anomeric form in the two cases. << Less
-
Purification from Fusobacterium mortiferum ATCC 25557 of a 6-phosphoryl-O-alpha-D-glucopyranosyl:6-phosphoglucohydrolase that hydrolyzes maltose 6-phosphate and related phospho-alpha-D-glucosides.
Thompson J., Gentry-Weeks C.R., Nguyen N.Y., Folk J.E., Robrish S.A.
6-Phosphoryl-O-alpha-D-glucopyranosyl:6-phosphoglucohydrolase (6-phospho-alpha-glucosidase) has been purified from Fusobacterium mortiferum ATCC 25557. p-Nitrophenyl-alpha-D-glucopyranoside 6-phosphate (pNP alpha Glc6P) served as the chromogenic substrate for detection and assay of enzyme activity ... >> More
6-Phosphoryl-O-alpha-D-glucopyranosyl:6-phosphoglucohydrolase (6-phospho-alpha-glucosidase) has been purified from Fusobacterium mortiferum ATCC 25557. p-Nitrophenyl-alpha-D-glucopyranoside 6-phosphate (pNP alpha Glc6P) served as the chromogenic substrate for detection and assay of enzyme activity. The O2-sensitive, metal-dependent phospho-alpha-glucosidase was stabilized during purification by inclusion of dithiothreitol and Mn2+ ion in chromatography buffers. Various 6-phosphoryl-O-alpha-linked glucosides, including maltose 6-phosphate, pNP alpha Glc6P, trehalose 6-phosphate, and sucrose 6-phosphate, were hydrolyzed by the enzyme to yield D-glucose 6-phosphate and aglycone moieties in a 1:1 molar ratio. 6-Phospho-alpha-glucosidase (M(r) of approximately 49,000; pI of approximately 4.9) is activated by Fe2+, Mn2+, Co2+, and Ni2+, and the maximum rate of pNP alpha Glc6P hydrolysis occurs at 40 degrees C within the pH range 7.0 to 7.5. The sequence of the first 32 amino acids of 6-phospho-alpha-glucosidase exhibits 67% identity (90% similarity) to that deduced for the N terminus of a putative phospho-beta-glucosidase (designated ORF f212) encoded by glvG in Escherichia coli. Western blots involving highly specific polyclonal antibody against 6-phospho-alpha-glucosidase and spectrophotometric analyses with pNP alpha Glc6P revealed only low levels of the enzyme in glucose-, mannose-, or fructose-grown cells of F. mortiferum. Synthesis of 6-phospho-alpha-glucosidase increased dramatically during growth of the organism on alpha-glucosides, such as maltose, alpha-methylglucoside, trehalose, turanose, and palatinose. << Less
-
The sim operon facilitates the transport and metabolism of sucrose isomers in Lactobacillus casei ATCC 334.
Thompson J., Jakubovics N., Abraham B., Hess S., Pikis A.
Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disacc ... >> More
Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with M(r)s of approximately 50,000 and approximately 17,500. Neither protein was present in cells grown on glucose, maltose or sucrose. Proteomic, enzymatic, and Western blot analyses identified the approximately 50-kDa protein as an NAD(+)- and metal ion-dependent phospho-alpha-glucosidase. The oligomeric enzyme was purified, and a catalytic mechanism is proposed. The smaller polypeptide represented an EIIA component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Phospho-alpha-glucosidase and EIIA are encoded by genes at the LSEI_0369 (simA) and LSEI_0374 (simF) loci, respectively, in a block of seven genes comprising the sucrose isomer metabolism (sim) operon. Northern blot analyses provided evidence that three mRNA transcripts were up-regulated during logarithmic growth of L. casei ATCC 334 on sucrose isomers. Internal simA and simF gene probes hybridized to approximately 1.5- and approximately 1.3-kb transcripts, respectively. A 6.8-kb mRNA transcript was detected by both probes, which was indicative of cotranscription of the entire sim operon. << Less
-
Metabolism of sucrose and its five linkage-isomeric alpha-D-glucosyl-D-fructoses by Klebsiella pneumoniae. Participation and properties of sucrose-6-phosphate hydrolase and phospho-alpha-glucosidase.
Thompson J., Robrish S.A., Immel S., Lichtenthaler F.W., Hall B.G., Pikis A.
Klebsiella pneumoniae is presently unique among bacterial species in its ability to metabolize not only sucrose but also its five linkage-isomeric alpha-d-glucosyl-d-fructoses: trehalulose, turanose, maltulose, leucrose, and palatinose. Growth on the isomeric compounds induced a protein of molecul ... >> More
Klebsiella pneumoniae is presently unique among bacterial species in its ability to metabolize not only sucrose but also its five linkage-isomeric alpha-d-glucosyl-d-fructoses: trehalulose, turanose, maltulose, leucrose, and palatinose. Growth on the isomeric compounds induced a protein of molecular mass approximately 50 kDa that was not present in sucrose-grown cells and which we have identified as an NAD(+) and metal ion-dependent 6-phospho-alpha-glucosidase (AglB). The aglB gene has been cloned and sequenced, and AglB (M(r) = 49,256) has been purified from a high expression system using the chromogenic p-nitrophenyl alpha-glucopyranoside 6-phosphate as substrate. Phospho-alpha-glucosidase catalyzed the hydrolysis of a wide variety of 6-phospho-alpha-glucosides including maltose-6'-phosphate, maltitol-6-phosphate, isomaltose-6'-phosphate, and all five 6'-phosphorylated isomers of sucrose (K(m) approximately 1-5 mm) yet did not hydrolyze sucrose-6-phosphate. By contrast, purified sucrose-6-phosphate hydrolase (M(r) approximately 53,000) hydrolyzed only sucrose-6-phosphate (K(m) approximately 80 microm). Differences in molecular shape and lipophilicity potential between sucrose and its isomers may be important determinants for substrate discrimination by the two phosphoglucosyl hydrolases. Phospho-alpha-glucosidase and sucrose-6-phosphate hydrolase exhibit no significant homology, and by sequence-based alignment, the two enzymes are assigned to Families 4 and 32, respectively, of the glycosyl hydrolase superfamily. The phospho-alpha-glucosidase gene (aglB) lies adjacent to a second gene (aglA), which encodes an EII(CB) component of the phosphoenolpyruvate-dependent sugar:phosphotransferase system. We suggest that the products of the two genes facilitate the phosphorylative translocation and subsequent hydrolysis of the five alpha-d-glucosyl-d-fructoses by K. pneumoniae. << Less