Reaction participants Show >> << Hide
- Name help_outline androsterone Identifier CHEBI:16032 (Beilstein: 2217626; CAS: 53-41-8) help_outline Charge 0 Formula C19H30O2 InChIKeyhelp_outline QGXBDMJGAMFCBF-HLUDHZFRSA-N SMILEShelp_outline [H][C@@]12CCC(=O)[C@@]1(C)CC[C@@]1([H])[C@@]2([H])CC[C@@]2([H])C[C@H](O)CC[C@]12C 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5α-androstan-3,17-dione Identifier CHEBI:15994 (CAS: 846-46-8) help_outline Charge 0 Formula C19H28O2 InChIKeyhelp_outline RAJWOBJTTGJROA-WZNAKSSCSA-N SMILEShelp_outline [H][C@@]12CC[C@@]3([H])[C@]4([H])CCC(=O)[C@@]4(C)CC[C@]3([H])[C@@]1(C)CCC(=O)C2 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20377 | RHEA:20378 | RHEA:20379 | RHEA:20380 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones.
Penning T.M., Burczynski M.E., Jez J.M., Hung C.F., Lin H.K., Ma H., Moore M., Palackal N., Ratnam K.
The kinetic parameters, steroid substrate specificity and identities of reaction products were determined for four homogeneous recombinant human 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) isoforms of the aldo-keto reductase (AKR) superfamily. The enzymes correspond to type 1 3alpha-HSD (AKR1 ... >> More
The kinetic parameters, steroid substrate specificity and identities of reaction products were determined for four homogeneous recombinant human 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) isoforms of the aldo-keto reductase (AKR) superfamily. The enzymes correspond to type 1 3alpha-HSD (AKR1C4), type 2 3alpha(17beta)-HSD (AKR1C3), type 3 3alpha-HSD (AKR1C2) and 20alpha(3alpha)-HSD (AKR1C1), and share at least 84% amino acid sequence identity. All enzymes acted as NAD(P)(H)-dependent 3-, 17- and 20-ketosteroid reductases and as 3alpha-, 17beta- and 20alpha-hydroxysteroid oxidases. The functional plasticity of these isoforms highlights their ability to modulate the levels of active androgens, oestrogens and progestins. Salient features were that AKR1C4 was the most catalytically efficient, with k(cat)/K(m) values for substrates that exceeded those obtained with other isoforms by 10-30-fold. In the reduction direction, all isoforms inactivated 5alpha-dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one; 5alpha-DHT) to yield 5alpha-androstane-3alpha,17beta-diol (3alpha-androstanediol). However, only AKR1C3 reduced Delta(4)-androstene-3,17-dione to produce significant amounts of testosterone. All isoforms reduced oestrone to 17beta-oestradiol, and progesterone to 20alpha-hydroxy-pregn-4-ene-3,20-dione (20alpha-hydroxyprogesterone). In the oxidation direction, only AKR1C2 converted 3alpha-androstanediol to the active hormone 5alpha-DHT. AKR1C3 and AKR1C4 oxidized testosterone to Delta(4)-androstene-3,17-dione. All isoforms oxidized 17beta-oestradiol to oestrone, and 20alpha-hydroxyprogesterone to progesterone. Discrete tissue distribution of these AKR1C enzymes was observed using isoform-specific reverse transcriptase-PCR. AKR1C4 was virtually liver-specific and its high k(cat)/K(m) allows this enzyme to form 5alpha/5beta-tetrahydrosteroids robustly. AKR1C3 was most prominent in the prostate and mammary glands. The ability of AKR1C3 to interconvert testosterone with Delta(4)-androstene-3,17-dione, but to inactivate 5alpha-DHT, is consistent with this enzyme eliminating active androgens from the prostate. In the mammary gland, AKR1C3 will convert Delta(4)-androstene-3,17-dione to testosterone (a substrate aromatizable to 17beta-oestradiol), oestrone to 17beta-oestradiol, and progesterone to 20alpha-hydroxyprogesterone, and this concerted reductive activity may yield a pro-oesterogenic state. AKR1C3 is also the dominant form in the uterus and is responsible for the synthesis of 3alpha-androstanediol which has been implicated as a parturition hormone. The major isoforms in the brain, capable of synthesizing anxiolytic steroids, are AKR1C1 and AKR1C2. These studies are in stark contrast with those in rat where only a single AKR with positional- and stereo-specificity for 3alpha-hydroxysteroids exists. << Less
Biochem. J. 351:67-77(2000) [PubMed] [EuropePMC]
This publication is cited by 15 other entries.
-
Mouse 17alpha-hydroxysteroid dehydrogenase (AKR1C21) binds steroids differently from other aldo-keto reductases: identification and characterization of amino acid residues critical for substrate binding.
Faucher F., Cantin L., Pereira de Jesus-Tran K., Lemieux M., Luu-The V., Labrie F., Breton R.
The mouse 17alpha-hydroxysteroid dehydrogenase (m17alpha-HSD) is the unique known member of the aldo-keto reductase (AKR) superfamily able to catalyze efficiently and in a stereospecific manner the conversion of androstenedione (Delta4) into epi-testosterone (epi-T), the 17alpha-epimer of testoste ... >> More
The mouse 17alpha-hydroxysteroid dehydrogenase (m17alpha-HSD) is the unique known member of the aldo-keto reductase (AKR) superfamily able to catalyze efficiently and in a stereospecific manner the conversion of androstenedione (Delta4) into epi-testosterone (epi-T), the 17alpha-epimer of testosterone. Structural and mutagenic studies had already identified one of the residues delineating the steroid-binding cavity, A24, as the major molecular determinant for the stereospecificity of m17alpha-HSD. We report here a ternary complex crystal structure (m17alpha-HSD:NADP(+):epi-T) determined at 1.85 A resolution that confirms this and reveals a unique steroid-binding mode for an AKR enzyme. Indeed, in addition to the interactions found in all other AKRs (van der Waals contacts stabilizing the core of the steroid and the hydrogen bonds established at the catalytic site by the Y55 and H117 residues with the oxygen atom of the ketone group to be reduced), m17alpha-HSD establishes with the other extremity of the steroid nucleus an additional interaction involving K31. By combining direct mutagenesis and kinetic studies, we found that the elimination of this hydrogen bond did not affect the affinity of the enzyme for its steroid substrate but led to a slight but significant increase of its catalytic efficiency (k(cat)/K(m)), suggesting a role for K31 in the release of the steroidal product at the end of the reaction. This previously unobserved steroid-binding mode for an AKR is similar to that adopted by other steroid-binding proteins, the hydroxysteroid dehydrogenases of the short-chain dehydrogenases/reductases (SDR) family and the steroid hormone nuclear receptors. Mutagenesis and structural studies made on the human type 3 3alpha-HSD, a closely related enzyme that shares 73% amino acids identity with the m17alpha-HSD, also revealed that the residue at position 24 of these two enzymes directly affects the binding and/or the release of NADPH, in addition to its role in their 17alpha/17beta stereospecificity. << Less
J. Mol. Biol. 369:525-540(2007) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Studies on a Tyr residue critical for the binding of coenzyme and substrate in mouse 3(17)alpha-hydroxysteroid dehydrogenase (AKR1C21): structure of the Y224D mutant enzyme.
Dhagat U., Endo S., Mamiya H., Hara A., El-Kabbani O.
Mouse 3(17)alpha-hydroxysteroid dehydrogenase (AKR1C21) is the only aldo-keto reductase that catalyzes the stereospecific reduction of 3- and 17-ketosteroids to the corresponding 3(17)alpha-hydroxysteroids. The Y224D mutation of AKR1C21 reduced the K(m) value for NADP(H) by up to 80-fold and compl ... >> More
Mouse 3(17)alpha-hydroxysteroid dehydrogenase (AKR1C21) is the only aldo-keto reductase that catalyzes the stereospecific reduction of 3- and 17-ketosteroids to the corresponding 3(17)alpha-hydroxysteroids. The Y224D mutation of AKR1C21 reduced the K(m) value for NADP(H) by up to 80-fold and completely reversed the 17alpha stereospecificity of the enzyme. The crystal structure of the Y224D mutant at 2.3 A resolution revealed that the mutation resulted in a change in the conformation of the flexible loop B, including the V-shaped groove, which is a unique feature of the active-site architecture of wild-type AKR1C21 and is formed by the side chains of Tyr224 and Trp227. Furthermore, mutations (Y224F and Q222N) of residues involved in forming the safety belt for binding of the coenzyme showed similar alterations in kinetic constants for 3alpha-hydroxy/3-ketosteroids and 17-hydroxy/ketosteroids compared with the wild type. << Less
Acta Crystallogr. D 66:198-204(2010) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Characterization of two isoforms of mouse 3(17)alpha-hydroxysteroid dehydrogenases of the aldo-keto reductase family.
Ishikura S., Usami N., Nakajima S., Shiraishi H., El-Kabbani O., Hara A.
Mouse kidney contains two 3(17)alpha-hydroxysteroid dehydrogenases (HSDs) that show essentially the same properties except for their isoelectric points. However, the structural differences and physiological roles of the two enzymes remain unknown. In this study, we have isolated cDNAs for the two ... >> More
Mouse kidney contains two 3(17)alpha-hydroxysteroid dehydrogenases (HSDs) that show essentially the same properties except for their isoelectric points. However, the structural differences and physiological roles of the two enzymes remain unknown. In this study, we have isolated cDNAs for the two 3(17)alpha-HSDs from a total RNA sample of mouse kidney by reverse transcription-PCR. The identity of the cDNAs was confirmed by characterization of the recombinant enzymes that showed the same molecular weights, pI values, pH optima, substrate specificity and inhibitor sensitivity as those of the enzymes from mouse kidney. We also found that the recombinant enzymes reduce precursors of neuroactive progesterone derivatives, 5alpha-dihydrotestoserone, deoxycorticosterone, dehydroepiandrosterone, dehydroepiandrosterone sulfate and estrone at low Km values of 0.3-2 microM. The two enzymes belonged to the aldo-keto reductase (AKR) family, and their 323-amino acid sequences differed only by five amino acids. The sequences of the two isoforms are identical to those of proteins that are predicted to be encoded in a gene for AKR1C21 in the database of the mouse genome. However, the mRNAs for the two isoforms were expressed in mouse kidney and other tissues, in which their expression levels were different. The results indicate an important role of 3(17)alpha-HSD in controlling the concentrations of various steroid hormones in the mouse tissues, and suggest the existence of two genes for the two isoforms of the enzyme. << Less
Biol. Pharm. Bull. 27:1939-1945(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.