Reaction participants Show >> << Hide
- Name help_outline L-proline Identifier CHEBI:60039 Charge 0 Formula C5H9NO2 InChIKeyhelp_outline ONIBWKKTOPOVIA-BYPYZUCNSA-N SMILEShelp_outline [O-]C(=O)[C@@H]1CCC[NH2+]1 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-pyrroline-2-carboxylate Identifier CHEBI:39785 Charge 0 Formula C5H7NO2 InChIKeyhelp_outline RHTAIKJZSXNELN-UHFFFAOYSA-N SMILEShelp_outline [O-]C(=O)C1=[NH+]CCC1 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20317 | RHEA:20318 | RHEA:20319 | RHEA:20320 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks.
Zhao S., Sakai A., Zhang X., Vetting M.W., Kumar R., Hillerich B., San Francisco B., Solbiati J., Steves A., Brown S., Akiva E., Barber A., Seidel R.D., Babbitt P.C., Almo S.C., Gerlt J.A., Jacobson M.P.
Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables la ... >> More
Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins in 12 families in the PRS that represent ∼85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks3 and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes. << Less
Elife 3:E03275-E03275(2014) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
A unique cis-3-hydroxy-L-proline dehydratase in the enolase superfamily.
Zhang X., Kumar R., Vetting M.W., Zhao S., Jacobson M.P., Almo S.C., Gerlt J.A.
The genome of Labrenzia aggregata IAM 12614 encodes an uncharacterized member of the muconate lactonizing enzyme (MLE) subgroup of the enolase superfamily (UniProt ID A0NXQ8 ). The gene encoding A0NXQ8 is located between genes that encode members of the proline racemase superfamily, 4R-hydroxyprol ... >> More
The genome of Labrenzia aggregata IAM 12614 encodes an uncharacterized member of the muconate lactonizing enzyme (MLE) subgroup of the enolase superfamily (UniProt ID A0NXQ8 ). The gene encoding A0NXQ8 is located between genes that encode members of the proline racemase superfamily, 4R-hydroxyproline 2-epimerase (UniProt ID A0NXQ7 ; 4HypE) and trans-3-hydroxy-l-proline dehydratase (UniProt ID A0NXQ9 ; t3LHypD). A0NXQ8 was screened with a library of proline analogues; two reactions were observed with cis-3-hydroxy-l-proline (c3LHyp), competing 2-epimerization to trans-3-hydroxy-d-proline (1,1-proton transfer) and dehydration to Δ(1)-pyrroline-2-carboxylate (β-elimination; c3LHyp dehydratase), with eventual total dehydration. The genome context encoding A0NXQ8 both (1) confirms its novel c3LHyp dehydratase function and (2) provides evidence for metabolic pathways that allow L. aggregata to utilize several isomeric 3- and 4-hydroxyprolines as sole carbon sources. << Less
J. Am. Chem. Soc. 137:1388-1391(2015) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
delta1-piperideine-2-carboxylate reductase of Pseudomonas putida.
Payton C.W., Chang Y.F.
Pseudomonas putida metabolizes D-lysine to delta 1-piperideine-2-carboxylate and L-pipecolate. The second step of this catabolic pathway is catalyzed by delta 1-piperideine-2-carboxylate reductase. This enzyme was isolated and purified from cells grown on DL-lysine as substrate. The enzyme was ver ... >> More
Pseudomonas putida metabolizes D-lysine to delta 1-piperideine-2-carboxylate and L-pipecolate. The second step of this catabolic pathway is catalyzed by delta 1-piperideine-2-carboxylate reductase. This enzyme was isolated and purified from cells grown on DL-lysine as substrate. The enzyme was very unstable, resulting in low recovery of activity and low purity after a six-step purification procedure. The enzyme had a pH optimum of 8.0 to 8.3. The Km values for delta 1-piperideine-2-carboxylate and NADPH were 0.23 and 0.13 mM, respectively. NADPH at concentrations above 0.15 mM was inhibitory to the enzyme. Delta 1-pyrroline-5-carboxylate, pyroglutamate, and NADH were poor substrates or coenzyme for delta 1-piperideine-2-carboxylate reductase. The enzyme reaction from delta 1-piperideine-2-carboxylate to L-pipecolate was irreversible. EDTA, sodium pyrophosphate, and dithiothreitol at concentrations of 1 mM protected the enzyme during storage. The enzyme was inhibited almost totally by Zn2+, Mn2+, Hg2+ Co2+, and p-chloromercuribenzoate at concentrations of 0.1 mM. The enzyme had a molecular weight of about 200,000. Both D-lysine and L-lysine were good inducers for the enzyme. Neither delta1-piperideine-2-carboxylate nor L-pipecolate was an effective inducer for the enzyme. P. putida cells grew on D-lysine only after a 5-to 8-h lag, which could be abolished by adding a supplement of 0.01% alpha-ketoglutarate or other readily metabolizable compounds. Such a supplement also converted the noncoordinate induction of this enzyme and pipecolate oxidase, both of the D-lysine pathway, to coordinacy. However, this effect was not observed if the enzyme pair was from different pathways of lysine metabolism in this organism (i.e., the D- and L-lysine pathways). << Less
J Bacteriol 149:864-871(1982) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline.
Muramatsu H., Mihara H., Kakutani R., Yasuda M., Ueda M., Kurihara T., Esaki N.
A Pseudomonas putida ATCC12633 gene, dpkA, encoding a putative protein annotated as malate/L-lactate dehydrogenase in various sequence data bases was disrupted by homologous recombination. The resultant dpkA(-) mutant was deprived of the ability to use D-lysine and also D-proline as a sole carbon ... >> More
A Pseudomonas putida ATCC12633 gene, dpkA, encoding a putative protein annotated as malate/L-lactate dehydrogenase in various sequence data bases was disrupted by homologous recombination. The resultant dpkA(-) mutant was deprived of the ability to use D-lysine and also D-proline as a sole carbon source. The dpkA gene was cloned and overexpressed in Escherichia coli, and the gene product was characterized. The enzyme showed neither malate dehydrogenase nor lactate dehydrogenase activity but catalyzed the NADPH-dependent reduction of such cyclic imines as Delta(1)-piperideine-2-carboxylate and Delta(1)-pyrroline-2-carboxylate to form L-pipecolate and L-proline, respectively. NADH also served as a hydrogen donor for both substrates, although the reaction rates were less than 1% of those with NADPH. The reverse reactions were also catalyzed by the enzyme but at much lower rates. Thus, the enzyme has dual metabolic functions, and we named the enzyme Delta(1)-piperideine-2-carboxylate/Delta(1)-pyrroline-2-carboxylate reductase, the first member of a novel subclass in a large family of NAD(P)-dependent oxidoreductases. << Less
J. Biol. Chem. 280:5329-5335(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/mu-Crystallin Under Physiological Conditions.
Hallen A., Cooper A.J., Jamie J.F., Karuso P.
Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioa ... >> More
Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioavailability. In this research we demonstrate potent sub-nanomolar inhibition of enzyme catalysis at neutral pH by the thyroid hormones L-thyroxine and 3,5,3'-triiodothyronine, whereas other thyroid hormone analogues were shown to be far weaker inhibitors. We also investigated (a) enzyme inhibition by the substrate analogues pyrrole-2-carboxylate, 4,5-dibromopyrrole-2-carboxylate and picolinate, and (b) enzyme catalysis at neutral pH of the cyclic ketimines S-(2-aminoethyl)-L-cysteine ketimine (owing to the complex nomenclature trivial names are used for the sulfur-containing cyclic ketimines as per the original authors' descriptions) (AECK), Δ(1)-piperideine-2-carboxylate (P2C), Δ(1)-pyrroline-2-carboxylate (Pyr2C) and Δ(2)-thiazoline-2-carboxylate. Kinetic data obtained at neutral pH suggests that ketimine reductase/CRYM plays a major role as a P2C/Pyr2C reductase and that AECK is not a major substrate at this pH. Thus, ketimine reductase is a key enzyme in the pipecolate pathway, which is the main lysine degradation pathway in the brain. In silico docking of various ligands into the active site of the X-ray structure of the enzyme suggests an unusual catalytic mechanism involving an arginine residue as a proton donor. Given the critical importance of thyroid hormones in brain function this research further expands on our knowledge of the connection between amino acid metabolism and regulation of thyroid hormone levels. << Less
Neurochem Res 40:1252-1266(2015) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Crystal structures of Delta1-piperideine-2-carboxylate/Delta1-pyrroline-2-carboxylate reductase belonging to a new family of NAD(P)H-dependent oxidoreductases: conformational change, substrate recognition, and stereochemistry of the reaction.
Goto M., Muramatsu H., Mihara H., Kurihara T., Esaki N., Omi R., Miyahara I., Hirotsu K.
Delta(1)-Piperideine-2-carboxylate/Delta(1)-pyrroline-2-carboxylate reductase from Pseudomonas syringae pv. tomato belongs to a novel sub-class in a large family of NAD(P)H-dependent oxidoreductases distinct from the conventional MDH/LDH superfamily characterized by the Rossmann fold. We have dete ... >> More
Delta(1)-Piperideine-2-carboxylate/Delta(1)-pyrroline-2-carboxylate reductase from Pseudomonas syringae pv. tomato belongs to a novel sub-class in a large family of NAD(P)H-dependent oxidoreductases distinct from the conventional MDH/LDH superfamily characterized by the Rossmann fold. We have determined the structures of the following three forms of the enzyme: the unliganded form, the complex with NADPH, and the complex with NADPH and pyrrole-2-carboxylate at 1.55-, 1.8-, and 1.7-A resolutions, respectively. The enzyme exists as a dimer, and the subunit consists of three domains; domain I, domain II (NADPH binding domain), and domain III. The core of the NADPH binding domain consists of a seven-stranded predominantly antiparallel beta-sheet fold (which we named SESAS) that is characteristic of the new oxidoreductase family. The enzyme preference for NADPH over NADH is explained by the cofactor binding site architecture. A comparison of the overall structures revealed that the mobile domains I and III change their conformations to produce the catalytic form. This conformational change plays important roles in substrate recognition and the catalytic process. The active site structure of the catalytic form made it possible to identify the catalytic Asp:Ser:His triad and investigate the catalytic mechanism from a stereochemical point of view. << Less
J. Biol. Chem. 280:40875-40884(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Identification and characterization of trans-3-hydroxy-L-proline dehydratase and Delta(1)-pyrroline-2-carboxylate reductase involved in trans-3-hydroxy-L-proline metabolism of bacteria.
Watanabe S., Tanimoto Y., Yamauchi S., Tozawa Y., Sawayama S., Watanabe Y.
trans-4-Hydroxy-l-proline (T4LHyp) and trans-3-hydroxy-l-proline (T3LHyp) occur mainly in collagen. A few bacteria can convert T4LHyp to α-ketoglutarate, and we previously revealed a hypothetical pathway consisting of four enzymes at the molecular level (J Biol Chem (2007) 282, 6685-6695; J Biol C ... >> More
trans-4-Hydroxy-l-proline (T4LHyp) and trans-3-hydroxy-l-proline (T3LHyp) occur mainly in collagen. A few bacteria can convert T4LHyp to α-ketoglutarate, and we previously revealed a hypothetical pathway consisting of four enzymes at the molecular level (J Biol Chem (2007) 282, 6685-6695; J Biol Chem (2012) 287, 32674-32688). Here, we first found that Azospirillum brasilense has the ability to grow not only on T4LHyp but also T3LHyp as a sole carbon source. In A. brasilense cells, T3LHyp dehydratase and NAD(P)H-dependent Δ(1)-pyrroline-2-carboxylate (Pyr2C) reductase activities were induced by T3LHyp (and d-proline and d-lysine) but not T4LHyp, and no effect of T3LHyp was observed on the expression of T4LHyp metabolizing enzymes: a hypothetical pathway of T3LHyp → Pyr2C → l-proline was proposed. Bacterial T3LHyp dehydratase, encoded to LhpH gene, was homologous with the mammalian enzyme. On the other hand, Pyr2C reductase encoded to LhpI gene was a novel member of ornithine cyclodeaminase/μ-crystallin superfamily, differing from known bacterial protein. Furthermore, the LhpI enzymes of A. brasilense and another bacterium showed several different properties, including substrate and coenzyme specificities. T3LHyp was converted to proline by the purified LhpH and LhpI proteins. Furthermore, disruption of LhpI gene from A. brasilense led to loss of growth on T3LHyp, d-proline and d-lysine, indicating that this gene has dual metabolic functions as a reductase for Pyr2C and Δ(1)-piperidine-2-carboxylate in these pathways, and that the T3LHyp pathway is not linked to T4LHyp and l-proline metabolism. << Less
FEBS Open Bio 4:240-250(2014) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.