Enzymes
UniProtKB help_outline | 56,310 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-arginine Identifier CHEBI:32682 Charge 1 Formula C6H15N4O2 InChIKeyhelp_outline ODKSFYDXXFIFQN-BYPYZUCNSA-O SMILEShelp_outline NC(=[NH2+])NCCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 72 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
tRNAArg
Identifier
RHEA-COMP:9658
Reactive part
help_outline
- Name help_outline AMP 3'-end residue Identifier CHEBI:78442 Charge -1 Formula C10H12N5O6P SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(-*)=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 76 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 508 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-arginyl-tRNAArg
Identifier
RHEA-COMP:9673
Reactive part
help_outline
- Name help_outline 3'-(L-arginyl)adenylyl group Identifier CHEBI:78513 Charge 1 Formula C16H26N9O7P SMILEShelp_outline NC(=[NH2+])NCCC[C@H]([NH3+])C(=O)O[C@H]1[C@@H](O)[C@@H](O[C@@H]1COP([O-])(-*)=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20301 | RHEA:20302 | RHEA:20303 | RHEA:20304 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Structure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation.
Fu Y., Kim Y., Jin K.S., Kim H.S., Kim J.H., Wang D., Park M., Jo C.H., Kwon N.H., Kim D., Kim M.H., Jeon Y.H., Hwang K.Y., Kim S., Cho Y.
In higher eukaryotes, one of the two arginyl-tRNA synthetases (ArgRSs) has evolved to have an extended N-terminal domain that plays a crucial role in protein synthesis and cell growth and in integration into the multisynthetase complex (MSC). Here, we report a crystal structure of the MSC subcompl ... >> More
In higher eukaryotes, one of the two arginyl-tRNA synthetases (ArgRSs) has evolved to have an extended N-terminal domain that plays a crucial role in protein synthesis and cell growth and in integration into the multisynthetase complex (MSC). Here, we report a crystal structure of the MSC subcomplex comprising ArgRS, glutaminyl-tRNA synthetase (GlnRS), and the auxiliary factor aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)/p43. In this complex, the N-terminal domain of ArgRS forms a long coiled-coil structure with the N-terminal helix of AIMP1 and anchors the C-terminal core of GlnRS, thereby playing a central role in assembly of the three components. Mutation of AIMP1 destabilized the N-terminal helix of ArgRS and abrogated its catalytic activity. Mutation of the N-terminal helix of ArgRS liberated GlnRS, which is known to control cell death. This ternary complex was further anchored to AIMP2/p38 through interaction with AIMP1. These findings demonstrate the importance of interactions between the N-terminal domains of ArgRS and AIMP1 for the catalytic and noncatalytic activities of ArgRS and for the assembly of the higher-order MSC protein complex. << Less
Proc. Natl. Acad. Sci. U.S.A. 111:15084-15089(2014) [PubMed] [EuropePMC]
-
PURIFICATION AND SUBSTRATE SPECIFICITY OF ARGINYL-RIBONUCLEIC ACID SYNTHETASE FROM RAT LIVER.
ALLENDE C.C., ALLENDE J.E.
-
[Nursing know-how].
Taillens F.
-
The C-terminal appended domain of human cytosolic leucyl-tRNA synthetase is indispensable in its interaction with arginyl-tRNA synthetase in the multi-tRNA synthetase complex.
Ling C., Yao Y.N., Zheng Y.G., Wei H., Wang L., Wu X.F., Wang E.D.
Human cytosolic leucyl-tRNA synthetase is one component of a macromolecular aminoacyl-tRNA synthetase complex. This is unlike prokaryotic and lower eukaryotic LeuRSs that exist as free soluble enzymes. There is little known about it, since the purified enzyme has been unavailable. Herein, human cy ... >> More
Human cytosolic leucyl-tRNA synthetase is one component of a macromolecular aminoacyl-tRNA synthetase complex. This is unlike prokaryotic and lower eukaryotic LeuRSs that exist as free soluble enzymes. There is little known about it, since the purified enzyme has been unavailable. Herein, human cytosolic leucyl-tRNA synthetase was heterologously expressed in a baculovirus system and purified to homogeneity. The molecular mass (135 kDa) of the enzyme is close to the theoretical value derived from its cDNA. The kinetic constants of the enzyme for ATP, leucine, and tRNA(Leu) in the ATP-PP(i) exchange and tRNA leucylation reactions were determined, and the results showed that it is quite active as a free enzyme. Human cytosolic leucyl-tRNA synthetase expressed in human 293 T cells localizes predominantly to the cytosol. Additionally, it is found to have a long C-terminal extension that is absent from bacterial and yeast LeuRSs. A C-terminal 89-amino acid truncated human cytosolic leucyl-tRNA synthetase was constructed and purified, and the catalytic activities, thermal stability, and subcellular location were found to be almost identical to native enzyme. In vivo and in vitro experiments, however, show that the C-terminal extension of human cytosolic leucyl-tRNA synthetase is indispensable for its interaction with the N-terminal of human cytosolic arginyl-tRNA synthetase in the macromolecular complex. Our results also indicate that the two molecules interact with each other only through their appended domains. << Less
-
p38 is essential for the assembly and stability of macromolecular tRNA synthetase complex: implications for its physiological significance.
Kim J.Y., Kang Y.-S., Lee J.-W., Kim H.J., Ahn Y.H., Park H., Ko Y.-G., Kim S.
Mammalian tRNA synthetases form a macromolecular complex with three nonenzyme factors: p43, p38, and p18. Here we introduced a mutation within the mouse p38 gene to understand its functional significance for the formation of the multi-tRNA synthetase complex. The complex was completely disintegrat ... >> More
Mammalian tRNA synthetases form a macromolecular complex with three nonenzyme factors: p43, p38, and p18. Here we introduced a mutation within the mouse p38 gene to understand its functional significance for the formation of the multi-tRNA synthetase complex. The complex was completely disintegrated by the deficiency of p38. In addition, the protein levels and catalytic activities of the component enzymes and cofactors were severely decreased. A partial truncation of the p38 polypeptide separated the associated components into different subdomains. The mutant mice showed lethality within 2 days of birth. Thus, this work provides the first evidence, to our knowledge, that p38 is essential for the structural integrity of the multi-tRNA synthetase complex and mouse viability. << Less
Proc. Natl. Acad. Sci. U.S.A. 99:7912-7916(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The arginyl transfer ribonucleic acid synthetase of Escherichia coli.
Mitra S.K., Mehler A.H.
-
Aminoacyl-tRNA synthesis.
Ibba M., Soll D.
Aminoacyl-tRNAs are substrates for translation and are pivotal in determining how the genetic code is interpreted as amino acids. The function of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anticodon. This is primarily achieved by the direct a ... >> More
Aminoacyl-tRNAs are substrates for translation and are pivotal in determining how the genetic code is interpreted as amino acids. The function of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anticodon. This is primarily achieved by the direct attachment of an amino acid to the corresponding tRNA by an aminoacyl-tRNA synthetase, although intrinsic proofreading and extrinsic editing are also essential in several cases. Recent studies of aminoacyl-tRNA synthesis, mainly prompted by the advent of whole genome sequencing and the availability of a vast body of structural data, have led to an expanded and more detailed picture of how aminoacyl-tRNAs are synthesized. This article reviews current knowledge of the biochemical, structural, and evolutionary facets of aminoacyl-tRNA synthesis. << Less
Annu Rev Biochem 69:617-650(2000) [PubMed] [EuropePMC]
This publication is cited by 26 other entries.