Enzymes
UniProtKB help_outline | 2,167 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 352 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetate Identifier CHEBI:30089 (Beilstein: 1901470; CAS: 71-50-1) help_outline Charge -1 Formula C2H3O2 InChIKeyhelp_outline QTBSBXVTEAMEQO-UHFFFAOYSA-M SMILEShelp_outline CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 174 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20289 | RHEA:20290 | RHEA:20291 | RHEA:20292 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Demonstration of dimethylnonanoyl-CoA thioesterase activity in rat liver peroxisomes followed by purification and molecular cloning of the thioesterase involved.
Ofman R., el Mrabet L., Dacremont G., Spijer D., Wanders R.J.
Peroxisomes play an indispensable role in cellular fatty acid oxidation in higher eukaryotes by catalyzing the chain shortening of a distinct set of fatty acids and fatty acid derivatives including pristanic acid (2,6,10,14-tetramethylpentadecanoic acid). Earlier studies have shown that pristanic ... >> More
Peroxisomes play an indispensable role in cellular fatty acid oxidation in higher eukaryotes by catalyzing the chain shortening of a distinct set of fatty acids and fatty acid derivatives including pristanic acid (2,6,10,14-tetramethylpentadecanoic acid). Earlier studies have shown that pristanic acid undergoes three cycles of beta-oxidation in peroxisomes to produce 4,8-dimethylnonanoyl-CoA (DMN-CoA) which is then transported to the mitochondria for full oxidation to CO(2) and H(2)O. In principle, this can be done via two different mechanisms in which DMN-CoA is either converted into the corresponding carnitine ester or hydrolyzed to 4,8-dimethylnonanoic acid plus CoASH. The latter pathway can only be operational if peroxisomes contain 4,8-dimethylnonanoyl-CoA thioesterase activity. In this paper we show that rat liver peroxisomes indeed contain 4,8-dimethylnonanoyl-CoA thioesterase activity. We have partially purified the enzyme involved from peroxisomes and identified the protein as the rat ortholog of a known human thioesterase using MALDI-TOF mass spectrometry in combination with the rat EST database. Heterologous expression studies in Escherichia coli established that the enzyme hydrolyzes not only DMN-CoA but also other branched-chain acyl-CoAs as well as straight-chain acyl-CoA-esters. Our data provide convincing evidence for the existence of the second pathway of acyl-CoA transport from peroxisomes to mitochondria by hydrolysis of the CoA-ester in peroxisomes followed by transport of the free acid to mitochondria, reactivation to its CoA-ester, and oxidation to CO(2) and H(2)O. (c)2002 Elsevier Science. << Less
Biochem. Biophys. Res. Commun. 290:629-634(2002) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Molecular cloning and functional expression of human cytosolic acetyl-CoA hydrolase.
Suematsu N., Isohashi F.
A cDNA encoding human cytosolic acetyl-CoA hydrolase (CACH) was isolated from a human liver cDNA library, sequenced and functionally expressed in insect cells. The human CACH cDNA encodes a 555-amino-acid sequence that is 81.4%/78.7% identical to those of the mouse/rat homologue, suggesting a cons ... >> More
A cDNA encoding human cytosolic acetyl-CoA hydrolase (CACH) was isolated from a human liver cDNA library, sequenced and functionally expressed in insect cells. The human CACH cDNA encodes a 555-amino-acid sequence that is 81.4%/78.7% identical to those of the mouse/rat homologue, suggesting a conserved role for this enzyme in the human and rodent livers. Bioinformatical study further reveals a high degree of similarity among the human and rodent CACHs as follows: First, the gene is composed of 15 exons ranging in size from 56 to 157 bp. Second, the protein consists of two thioesterase regions and a C-terminal steroidogenic acute regulatory protein-related lipid transfer (START) domain. Third, the promoter region is GC-rich and contains GC boxes, but lacks both TATA and CCAAT boxes, the typical criteria of housekeeping genes. A consensus peroxisome proliferator responsive element (PPRE) present in the rodent CACH promoter regions supports marked CACH induction in rat liver by peroxisome proliferator (PP). << Less
-
Characterization of an acyl-CoA thioesterase that functions as a major regulator of peroxisomal lipid metabolism.
Hunt M.C., Solaas K., Kase B.F., Alexson S.E.H.
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic ac ... >> More
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic acids or transported to mitochondria for further metabolism. Several of these carboxylic acids are slowly oxidized and may therefore sequester coenzyme A (CoASH). To prevent CoASH sequestration and to facilitate excretion of chain-shortened carboxylic acids, acyl-CoA thioesterases, which catalyze the hydrolysis of acyl-CoAs to the free acid and CoASH, may play important roles. Here we have cloned and characterized a peroxisomal acyl-CoA thioesterase from mouse, named PTE-2 (peroxisomal acyl-CoA thioesterase 2). PTE-2 is ubiquitously expressed and induced at mRNA level by treatment with the peroxisome proliferator WY-14,643 and fasting. Induction seen by these treatments was dependent on the peroxisome proliferator-activated receptor alpha. Recombinant PTE-2 showed a broad chain length specificity with acyl-CoAs from short- and medium-, to long-chain acyl-CoAs, and other substrates including trihydroxycoprostanoyl-CoA, hydroxymethylglutaryl-CoA, and branched chain acyl-CoAs, all of which are present in peroxisomes. Highest activities were found with the CoA esters of primary bile acids choloyl-CoA and chenodeoxycholoyl-CoA as substrates. PTE-2 activity is inhibited by free CoASH, suggesting that intraperoxisomal free CoASH levels regulate the activity of this enzyme. The acyl-CoA specificity of recombinant PTE-2 closely resembles that of purified mouse liver peroxisomes, suggesting that PTE-2 is the major acyl-CoA thioesterase in peroxisomes. Addition of recombinant PTE-2 to incubations containing isolated mouse liver peroxisomes strongly inhibited bile acid-CoA:amino acid N-acyltransferase activity, suggesting that this thioesterase can interfere with CoASH-dependent pathways. We propose that PTE-2 functions as a key regulator of peroxisomal lipid metabolism. << Less
J. Biol. Chem. 277:1128-1138(2002) [PubMed] [EuropePMC]
This publication is cited by 22 other entries.
-
Structural basis for regulation of the human acetyl-CoA thioesterase 12 and interactions with the steroidogenic acute regulatory protein-related lipid transfer (START) domain.
Swarbrick C.M., Roman N., Cowieson N., Patterson E.I., Nanson J., Siponen M.I., Berglund H., Lehtio L., Forwood J.K.
Acetyl-CoA plays a fundamental role in cell signaling and metabolic pathways, with its cellular levels tightly controlled through reciprocal regulation of enzymes that mediate its synthesis and catabolism. ACOT12, the primary acetyl-CoA thioesterase in the liver of human, mouse, and rat, is respon ... >> More
Acetyl-CoA plays a fundamental role in cell signaling and metabolic pathways, with its cellular levels tightly controlled through reciprocal regulation of enzymes that mediate its synthesis and catabolism. ACOT12, the primary acetyl-CoA thioesterase in the liver of human, mouse, and rat, is responsible for cleavage of the thioester bond within acetyl-CoA, producing acetate and coenzyme A for a range of cellular processes. The enzyme is regulated by ADP and ATP, which is believed to be mediated through the ligand-induced oligomerization of the thioesterase domains, whereby ATP induces active dimers and tetramers, whereas apo- and ADP-bound ACOT12 are monomeric and inactive. Here, using a range of structural and biophysical techniques, it is demonstrated that ACOT12 is a trimer rather than a tetramer and that neither ADP nor ATP exert their regulatory effects by altering the oligomeric status of the enzyme. Rather, the binding site and mechanism of ADP regulation have been determined to occur through two novel regulatory regions, one involving a large loop that links the thioesterase domains (Phe(154)-Thr(178)), defined here as RegLoop1, and a second region involving the C terminus of thioesterase domain 2 (Gln(304)-Gly(326)), designated RegLoop2. Mutagenesis confirmed that Arg(312) and Arg(313) are crucial for this mode of regulation, and novel interactions with the START domain are presented together with insights into domain swapping within eukaryotic thioesterases for substrate recognition. In summary, these experiments provide the first structural insights into the regulation of this enzyme family, revealing an alternate hypothesis likely to be conserved throughout evolution. << Less