Enzymes
UniProtKB help_outline | 5 proteins |
Reaction participants Show >> << Hide
- Name help_outline (E)-caffeate Identifier CHEBI:57770 (Beilstein: 8986917) help_outline Charge -1 Formula C9H7O4 InChIKeyhelp_outline QAIPRVGONGVQAS-DUXPYHPUSA-M SMILEShelp_outline Oc1ccc(\C=C\C([O-])=O)cc1O 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (E)-ferulate Identifier CHEBI:29749 Charge -1 Formula C10H9O4 InChIKeyhelp_outline KSEBMYQBYZTDHS-HWKANZROSA-M SMILEShelp_outline COc1cc(\C=C\C([O-])=O)ccc1O 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20225 | RHEA:20226 | RHEA:20227 | RHEA:20228 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters.
Goujon T., Sibout R., Pollet B., Maba B., Nussaume L., Bechtold N., Lu F., Ralph J., Mila I., Barriere Y., Lapierre C., Jouanin L.
A promoter-trap screen allowed us to identify an Arabidopsis line expressing GUS in the root vascular tissues. T-DNA border sequencing showed that the line was mutated in the caffeic acid O-methyltransferase 1 gene (AtOMT1) and therefore deficient in OMT1 activity. Atomt1 is a knockout mutant and ... >> More
A promoter-trap screen allowed us to identify an Arabidopsis line expressing GUS in the root vascular tissues. T-DNA border sequencing showed that the line was mutated in the caffeic acid O-methyltransferase 1 gene (AtOMT1) and therefore deficient in OMT1 activity. Atomt1 is a knockout mutant and the expression profile of the AtOMT1 gene has been determined as well as the consequences of the mutation on lignins, on soluble phenolics, on cell wall digestibility, and on the expression of the genes involved in monolignol biosynthesis. In this mutant and relative to the wild type, lignins lack syringyl (S) units and contain more 5-hydroxyguaiacyl units (5-OH-G), the precursors of S-units. The sinapoyl ester pool is modified with a two-fold reduction of sinapoyl-malate in the leaves and stems of mature plants as well as in seedlings. In addition, LC-MS analysis of the soluble phenolics extracted from the seedlings reveals the occurrence of unusual derivatives assigned to 5-OH-feruloyl malate and to 5-OH-feruloyl glucose. Therefore, AtOMT1 enzymatic activity appears to be involved not only in lignin formation but also in the biosynthesis of sinapate esters. In addition, a deregulation of other monolignol biosynthetic gene expression can be observed in the Atomt1 mutant. A poplar cDNA encoding a caffeic acid OMT (PtOMT1) was successfully used to complement the Atomt1 mutant and restored both the level of S units and of sinapate esters to the control level. However, the over-expression of PtOMT1 in wild-type Arabidopsis did not increase the S-lignin content, suggesting that OMT is not a limiting enzyme for S-unit biosynthesis. << Less
-
Characterization of two cDNA clones which encode O-methyltransferases for the methylation of both flavonoid and phenylpropanoid compounds.
Gauthier A., Gulick P.J., Ibrahim R.K.
Enzymatic O-methylation of phenylpropanoid and flavonoid compounds is believed to be catalyzed by distinct classes of O-methyltransferases [EC 2.1.1.6x]. The O-methylated derivatives of phenylpropanoids and flavonoids play an important role in lignification and as antimicrobial compounds, respecti ... >> More
Enzymatic O-methylation of phenylpropanoid and flavonoid compounds is believed to be catalyzed by distinct classes of O-methyltransferases [EC 2.1.1.6x]. The O-methylated derivatives of phenylpropanoids and flavonoids play an important role in lignification and as antimicrobial compounds, respectively. Two cDNA clones, OMT1 and OMT2, which differ in three amino acid residues were isolated and characterized from the semiaquatic freshwater weed Chrysosplenium americanum (Saxifragaceae). These two novel cDNA clones encode enzymes which catalyze the 3'-O-methylation of the flavonoid aglycones luteolin and quercetin, although they also catalyze the efficient 3/5-O-methylation of the phenylpropanoids caffeic and 5-hydroxyferulic acids, respectively. Both recombinant proteins were partially purified from an Escherichia coli expression system and their kinetic parameters were compared using two flavonoids and two phenylpropanoids as substrates. Although both gene products methylate caffeic acid and 5-hydroxyferulic acid to a similar extent, they exhibit a threefold higher affinity for and a four-to sixfold increase in turnover of flavonoid compounds. The gene product of OMT1 accepts the flavonoid substrates luteolin and quercetin for methylation at a higher rate than that of OMT2, as indicated by a two-to threefold increase in its Vmax values and turnover ratios. The fact that C. americanum accumulates a variety of highly methylated flavonols and exhibits little lignification suggests that these two flavonoid OMT clones have retained their ability to O-methylate phenylpropanoids as well. These results are discussed in relation to differences in the amino acid sequences of these two clones, as well as with other O-methyltransferases, and the evolutionary divergence of these genes in plants. << Less
Arch. Biochem. Biophys. 351:243-249(1998) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Furanocoumarin biosynthesis in Ammi majus L. Cloning of bergaptol O-methyltransferase.
Hehmann M., Lukacin R., Ekiert H., Matern U.
Plants belonging to the Apiaceae or Rutaceae accumulate methoxylated psoralens, such as bergapten or xanthotoxin, as the final products of their furanocoumarin biosynthesis, and the rate of accumulation depends on environmental and other cues. Distinct O-methyltransferase activities had been repor ... >> More
Plants belonging to the Apiaceae or Rutaceae accumulate methoxylated psoralens, such as bergapten or xanthotoxin, as the final products of their furanocoumarin biosynthesis, and the rate of accumulation depends on environmental and other cues. Distinct O-methyltransferase activities had been reported to methylate bergaptol to bergapten and xanthotoxol to xanthotoxin, from induced cell cultures of Ruta graveolens, Petroselinum crispum and Ammi majus. Bergaptol 5-O-methyltransferase (BMT) cDNA was cloned from dark-grown Ammi majus L. cells treated with a crude fungal elicitor. The translated polypeptide of 38.7 kDa, composed of 354 amino acids, revealed considerable sequence similarity to heterologous caffeic acid 3-O-methyltransferases (COMTs). For homologous comparison, COMT was cloned from A. majus plants and shown to share 64% identity and about 79% similarity with the BMT sequence at the polypeptide level. Functional expression of both enzymes in Escherichia coli revealed that the BMT activity in the bacterial extracts was labile and rapidly lost on purification, whereas the COMT activity remained stable. Furthermore, the recombinant AmBMT, which was most active in potassium phosphate buffer of pH 8 at 42 degrees C, showed narrow substrate specificity for bergaptol (Km SAM 6.5 micro m; Km Bergaptol 2.8 micro m) when assayed with a variety of substrates, including xanthotoxol, while the AmCOMT accepted 5-hydroxyferulic acid, esculetin and other substrates. Dark-grown A. majus cells expressed significant BMT activity which nevertheless increased sevenfold within 8 h upon the addition of elicitor and reached a transient maximum at 8-11 h, whereas the COMT activity was rather low and did not respond to the elicitation. Complementary Northern blotting revealed that the BMT transcript abundance increased to a maximum at 7 h, while only a weak constitutive signal was observed for the COMT transcript. The AmBMT sequence thus represents a novel database accession specific for the biosynthesis of psoralens. << Less
Eur. J. Biochem. 271:932-940(2004) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.