Enzymes
UniProtKB help_outline | 28,321 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 512 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline adenine Identifier CHEBI:16708 (CAS: 73-24-5) help_outline Charge 0 Formula C5H5N5 InChIKeyhelp_outline GFFGJBXGBJISGV-UHFFFAOYSA-N SMILEShelp_outline Nc1ncnc2[nH]cnc12 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-ribose 5-phosphate Identifier CHEBI:78346 Charge -2 Formula C5H9O8P InChIKeyhelp_outline KTVPXOYAKDPRHY-SOOFDHNKSA-L SMILEShelp_outline OC1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 25 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20129 | RHEA:20130 | RHEA:20131 | RHEA:20132 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Adenylate degradation in Escherichia coli. The role of AMP nucleosidase and properties of the purified enzyme.
Leung H.B., Schramm V.L.
Extracts of Escherichia coli K12 degrade AMP to hypoxanthine, adenine, adenosine, and inosine. Degradation experiments with mutants which lack purine nucleoside phosphorylase or both purine nucleoside phosphorylase and adenosine deaminase demonstrate that hypoxanthine formation is dependent on pur ... >> More
Extracts of Escherichia coli K12 degrade AMP to hypoxanthine, adenine, adenosine, and inosine. Degradation experiments with mutants which lack purine nucleoside phosphorylase or both purine nucleoside phosphorylase and adenosine deaminase demonstrate that hypoxanthine formation is dependent on purine nucleoside phosphorylase. These findings are consistent with an absence of adenine deaminase activity in E. coli. Adenine is formed from AMP in extracts of the E. coli mutants as well as the wild type cells. This activity is due to AMP nucleosidase. Purified, homogeneous AMP nucleosidase gives a subunit Mr = 52,000 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 280,000 by comparative gel filtration. Kinetic studies with this enzyme give cooperative initial rate curves with AMP as substrate, with MgATP2-as an activator, and with Pi as an inhibitor. Phosphate inhibition is competitive with McATP2-(Ki = 0.2 mM) and reverses the activation by MgATP2-. In the absence of MgATP2-, the apparent S0.5 for AMP is 15 mM and decreases to 90 microM at saturating MgATP2-. The maximum rate of AMP hydrolysis is not affected by MgATP2-. Kinetics of MgATP2-activation give a constant for half-maximum activation varying from 120 microM in the presence of low AMP to approximately 2 microM when AMP is present at near saturation. Formycin 5'-PO4 is a powerful competitive inhibitor with respect to AMP, giving a Kis of 72 nM and a Km/Kis ratio of 1,200. Adenylate degradation experiments indicate that AMP nucleosidase is the major enzyme of AMP catabolism in E. coli. The kinetic properties of the purified enzyme indicate that regulation occurs by the intracellular MgATP2-/Pi ratio and the concentration of AMP. << Less
-
The enzymatic cleavage of adenylic acid to adenine and ribose 5-phosphate.
HURWITZ J., HEPPEL L.A., HORECKER B.L.
-
Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli.
Sevin D.C., Fuhrer T., Zamboni N., Sauer U.
Our understanding of metabolism is limited by a lack of knowledge about the functions of many enzymes. Here, we develop a high-throughput mass spectrometry approach to comprehensively profile proteins for in vitro enzymatic activity. Overexpressed or purified proteins are incubated in a supplement ... >> More
Our understanding of metabolism is limited by a lack of knowledge about the functions of many enzymes. Here, we develop a high-throughput mass spectrometry approach to comprehensively profile proteins for in vitro enzymatic activity. Overexpressed or purified proteins are incubated in a supplemented metabolome extract containing hundreds of biologically relevant candidate substrates, and accumulating and depleting metabolites are determined by nontargeted mass spectrometry. By combining chemometrics and database approaches, we established an automated pipeline for unbiased annotation of the functions of novel enzymes. In screening all 1,275 functionally uncharacterized Escherichia coli proteins, we discovered 241 potential novel enzymes, 12 of which we experimentally validated. Our high-throughput in vitro metabolomics method is generally applicable to any purified protein or crude cell lysate of its overexpression host and enables performing up to 1,200 nontargeted enzyme assays per working day. << Less
Nat. Methods 14:187-194(2017) [PubMed] [EuropePMC]
This publication is cited by 30 other entries.