Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [2Fe-2S]-[ferredoxin]
Identifier
RHEA-COMP:10001
Reactive part
help_outline
- Name help_outline [2Fe-2S]1+ Identifier CHEBI:33738 Charge 1 Formula Fe2S2 InChIKeyhelp_outline MAGIRAZQQVQNKP-UHFFFAOYSA-N SMILEShelp_outline S1[Fe]S[Fe+]1 2D coordinates Mol file for the small molecule Search links Involved in 238 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [2Fe-2S]-[ferredoxin]
Identifier
RHEA-COMP:10000
Reactive part
help_outline
- Name help_outline [2Fe-2S]2+ Identifier CHEBI:33737 Charge 2 Formula Fe2S2 InChIKeyhelp_outline XSOVBBGAMBLACL-UHFFFAOYSA-N SMILEShelp_outline S1[Fe+]S[Fe+]1 2D coordinates Mol file for the small molecule Search links Involved in 238 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20125 | RHEA:20126 | RHEA:20127 | RHEA:20128 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Salicylate 5-hydroxylase from Ralstonia sp. strain U2: a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase.
Zhou N.Y., Al-Dulayymi J., Baird M.S., Williams P.A.
The genes from the oxygenase cluster nagAaGHAbAcAd of naphthalene-degrading Ralstonia sp. strain U2 were cloned and overexpressed. Salicylate 5-hydroxylase (S5H) activity, converting salicylate to gentisate, was present in vitro only in the single extract of cells with overexpressed nagAaGHAb or i ... >> More
The genes from the oxygenase cluster nagAaGHAbAcAd of naphthalene-degrading Ralstonia sp. strain U2 were cloned and overexpressed. Salicylate 5-hydroxylase (S5H) activity, converting salicylate to gentisate, was present in vitro only in the single extract of cells with overexpressed nagAaGHAb or in a mixture of three cell extracts containing, respectively, NagGH (the oxygenase components), NagAa (ferredoxin reductase), and NagAb (ferredoxin). Each of the three extracts required for S5H activity was rate limiting in the presence of excess of the others but, when in excess, did not affect the rate of catalysis. S5H catalyzed the 5-hydroxylation of the aromatic rings of 3- and 4-substituted salicylates. However, the methyl group of 5-methylsalicylate was hydroxylated to produce the 5-hydroxymethyl derivative and the 6-position on the ring of 5-chlorosalicylate was hydroxylated, producing 5-chloro-2,6-dihydroxybenzoate. In an assay for the nag naphthalene dioxygenase (NDO) based on the indole-linked oxidation of NADH, three extracts were essential for activity (NagAcAd, NagAa, and NagAb). NDO and S5H were assayed in the presence of all possible combinations of the nag proteins and the corresponding nah NDO proteins from the "classical" naphthalene degrader P. putida NCIMB9816. All three oxygenase components functioned with mixed combinations of the electron transport proteins from either strain. The S5H from strain U2 is a unique monooxygenase which shares sequence similarity with dioxygenases such as NDO but is also sufficiently similar in structure to interact with the same electron transport chain and probably does so in vivo during naphthalene catabolism in strain U2. << Less
J. Bacteriol. 184:1547-1555(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Purification and properties of NADH-ferredoxin NAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816.
Haigler B.E., Gibson D.T.
Cells of Pseudomonas sp. strain NCIB 9816, after growth with naphthalene or salicylate, contain a multicomponent enzyme system that oxidizes naphthalene to cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. We purified one of these components to homogeneity and found it to be an iron-sulfur flavoprotei ... >> More
Cells of Pseudomonas sp. strain NCIB 9816, after growth with naphthalene or salicylate, contain a multicomponent enzyme system that oxidizes naphthalene to cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. We purified one of these components to homogeneity and found it to be an iron-sulfur flavoprotein that loses the flavin cofactor during purification. Dialysis against flavin adenine dinucleotide (FAD) showed that the enzyme bound 1 mol of FAD per mol of enzyme protein. The enzyme consisted of a single polypeptide with an apparent molecular weight of 36,300. The purified protein contained 1.8 g-atoms of iron and 2.0 g-atoms of acid-labile sulfur and showed absorption maxima at 278, 340, 420, and 460 nm, with a broad shoulder at 540 nm. The purified enzyme catalyzed the reduction of cytochrome c, dichlorophenolindophenol, Nitro Blue Tetrazolium, and ferricyanide. These activities were enhanced in the presence of added FAD. The ability of the enzyme to catalyze the reduction of the ferredoxin involved in naphthalene reduction and other electron acceptors indicates that it functions as an NAD(P)H-oxidoreductase in the naphthalene dioxygenase system. The results suggest that naphthalene dioxygenase requires two proteins with three redox groups to transfer electrons from NADH to the terminal oxygenase. << Less
J. Bacteriol. 172:457-464(1990) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.