Reaction participants Show >> << Hide
- Name help_outline L-rhamnulose Identifier CHEBI:17897 (CAS: 14807-05-7) help_outline Charge 0 Formula C6H12O5 InChIKeyhelp_outline QZNPNKJXABGCRC-FUTKDDECSA-N SMILEShelp_outline C[C@H](O)[C@H](O)[C@@H](O)C(=O)CO 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-rhamnulose 1-phosphate Identifier CHEBI:58313 Charge -2 Formula C6H11O8P InChIKeyhelp_outline KNYGWWDTPGSEPD-FUTKDDECSA-L SMILEShelp_outline C[C@H](O)[C@H](O)[C@@H](O)C(=O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20117 | RHEA:20118 | RHEA:20119 | RHEA:20120 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
The purification and properties of L-rhamnulokinase.
Chiu T.H., Feingold D.S.
Biochim. Biophys. Acta 92:489-497(1964) [PubMed] [EuropePMC]
-
Structure and reaction mechanism of L-rhamnulose kinase from Escherichia coli.
Grueninger D., Schulz G.E.
Bacterial L-rhamnulose kinase participates in the degradation of L-rhamnose, which is ubiquitous and particularly abundant in some plants. The enzyme catalyzes the transfer of the gamma-phosphate group from ATP to the 1-hydroxyl group of L-rhamnulose. We determined the crystal structures of the su ... >> More
Bacterial L-rhamnulose kinase participates in the degradation of L-rhamnose, which is ubiquitous and particularly abundant in some plants. The enzyme catalyzes the transfer of the gamma-phosphate group from ATP to the 1-hydroxyl group of L-rhamnulose. We determined the crystal structures of the substrate-free kinase and of a complex between the enzyme, ADP and L-fructose, which besides rhamnulose is also processed. According to its chainfold, the kinase belongs to the hexokinase-hsp70-actin superfamily. The closest structurally known homologue is glycerol kinase. The reported structures reveal a large conformational change on substrate binding as well as the key residues involved in catalysis. The substrates ADP and beta-L-fructose are in an ideal position to define a direct in-line phosphoryl transfer through a bipyramidal pentavalent intermediate. The enzyme contains one disulfide bridge at a position where two homologous glycerol kinases are regulated by phosphorylation and effector binding, respectively, and it has two more pairs of cysteine residues near the surface that are poised for bridging. However, identical catalytic rates were observed for the enzyme in reducing and oxidizing environments, suggesting that regulation by disulfide formation is unlikely. << Less
-
Metabolism of L-rhamnose by Escherichia coli. II. The phosphorylation of L-rhamnulose.
WILSON D.M., AJL S.