Reaction participants Show >> << Hide
- Name help_outline β-D-glucose 1-phosphate Identifier CHEBI:57684 (Beilstein: 1688547) help_outline Charge -2 Formula C6H11O9P InChIKeyhelp_outline HXXFSFRBOHSIMQ-DVKNGEFBSA-L SMILEShelp_outline OC[C@H]1O[C@@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline β-D-glucose 6-phosphate Identifier CHEBI:58247 Charge -2 Formula C6H11O9P InChIKeyhelp_outline NBSCHQHZLSJFNQ-VFUOTHLCSA-L SMILEShelp_outline O[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20113 | RHEA:20114 | RHEA:20115 | RHEA:20116 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
M-CSA help_outline |
Publications
-
Chemical confirmation of a pentavalent phosphorane in complex with beta-phosphoglucomutase.
Tremblay L.W., Zhang G., Dai J., Dunaway-Mariano D., Allen K.N.
This communication reports the X-ray crystal structure of the alpha-d-galactose-1-phosphate complex with that of Lactococcus lactis beta-phosphoglucomutase (beta-PGM) crystallized in the presence of Mg2+ cofactor and the enzyme-to-phosphorus ratio determined by protein and phosphate analyses of th ... >> More
This communication reports the X-ray crystal structure of the alpha-d-galactose-1-phosphate complex with that of Lactococcus lactis beta-phosphoglucomutase (beta-PGM) crystallized in the presence of Mg2+ cofactor and the enzyme-to-phosphorus ratio determined by protein and phosphate analyses of the crystalline complex. The 1:1 ratio determined for this complex was compared to the 1:2 ratio determined for the crystals of beta-PGM grown in the presence of substrate and Mg2+ cofactor. This result verifies the published structure assignment of this latter complex as the phosphorane adduct formed by covalent bonding between the active site Asp8 carboxylate to the C(1)phosphorus of the beta-glucose 1,6-bisphosphate ligand and rules out the proposal of a beta-PGM-glucose-6-phosphate-1-MgF3- complex. << Less
-
The pentacovalent phosphorus intermediate of a phosphoryl transfer reaction.
Lahiri S.D., Zhang G., Dunaway-Mariano D., Allen K.N.
Enzymes provide enormous rate enhancements, unmatched by any other type of catalyst. The stabilization of high-energy states along the reaction coordinate is the crux of the catalytic power of enzymes. We report the atomic-resolution structure of a high-energy reaction intermediate stabilized in t ... >> More
Enzymes provide enormous rate enhancements, unmatched by any other type of catalyst. The stabilization of high-energy states along the reaction coordinate is the crux of the catalytic power of enzymes. We report the atomic-resolution structure of a high-energy reaction intermediate stabilized in the active site of an enzyme. Crystallization of phosphorylated beta-phosphoglucomutase in the presence of the Mg(II) cofactor and either of the substrates glucose 1-phosphate or glucose 6-phosphate produced crystals of the enzyme-Mg(II)-glucose 1,6-(bis)phosphate complex, which diffracted x-rays to 1.2 and 1.4 angstroms, respectively. The structure reveals a stabilized pentacovalent phosphorane formed in the phosphoryl transfer from the C(1)O of glucose 1,6-(bis)phosphate to the nucleophilic Asp8 carboxylate. << Less
-
Conformational cycling in beta-phosphoglucomutase catalysis: reorientation of the beta-D-glucose 1,6-(Bis)phosphate intermediate.
Dai J., Wang L., Allen K.N., Radstrom P., Dunaway-Mariano D.
Activated Lactococcus lactis beta-phosphoglucomutase (betaPGM) catalyzes the conversion of beta-d-glucose 1-phosphate (betaG1P) derived from maltose to beta-d-glucose 6-phosphate (G6P). Activation requires Mg(2+) binding and phosphorylation of the active site residue Asp8. Initial velocity techniq ... >> More
Activated Lactococcus lactis beta-phosphoglucomutase (betaPGM) catalyzes the conversion of beta-d-glucose 1-phosphate (betaG1P) derived from maltose to beta-d-glucose 6-phosphate (G6P). Activation requires Mg(2+) binding and phosphorylation of the active site residue Asp8. Initial velocity techniques were used to define the steady-state kinetic constants k(cat) = 177 +/-9 s(-)(1), K(m) = 49 +/- 4 microM for the substrate betaG1P and K(m) = 6.5 +/-0.7 microM for the activator beta-d-glucose 1,6-bisphosphate (betaG1,6bisP). The observed transient accumulation of [(14)C]betaG1,6bisP (12% at approximately 0.1 s) in the single turnover reaction carried out with excess betaPGM (40 microM) and limiting [(14)C]betaG1P (5 microM) and betaG1,6bisP (5 microM) supported the role of betaG1,6bisP as a reaction intermediate in the conversion of the betaG1P to G6P. Single turnover reactions of [(14)C]betaG1,6bisP with excess betaPGM were carried out to demonstrate that phosphoryl transfer rather than ligand binding is rate-limiting and to show that the betaG1,6bisP binds to the active site in two different orientations (one positioning the C(1)phosphoryl group for reaction with Asp8, and the other orientation positioning the C(6)phosphoryl group for reaction with Asp8) with roughly the same efficiency. Single turnover reactions carried out with betaPGM, [(14)C]betaG1P, and unlabeled betaG1,6bisP demonstrated complete exchange of label to the betaG1,6bisP during the catalytic cycle. Thus, the reorientation of the betaG1,6bisP intermediate that is required to complete the catalytic cycle occurs by diffusion into solvent followed by binding in the opposite orientation. Published X-ray structures of betaG1P suggest that the reorientation and phosphoryl transfer from betaG1,6bisP occur by conformational cycling of the enzyme between the active site open and closed forms via cap domain movement. Last, the equilibrium ratio of betaG1,6bisP to betaG1P plus G6P was examined to evidence a significant stabilization of betaPGM aspartyl phosphate. << Less
-
Phosphoryl group transfer: evolution of a catalytic scaffold.
Allen K.N., Dunaway-Mariano D.
It is proposed that enzymic phosphoryl-transfer reactions occur by concerted, step-wise, associative (phosphorane-intermediate) or dissociative (metaphosphate-intermediate) mechanisms, as dictated by the catalytic scaffold and the reactants. During the evolution of a phosphotransferase family, the ... >> More
It is proposed that enzymic phosphoryl-transfer reactions occur by concerted, step-wise, associative (phosphorane-intermediate) or dissociative (metaphosphate-intermediate) mechanisms, as dictated by the catalytic scaffold and the reactants. During the evolution of a phosphotransferase family, the mechanism of the phosphoryl-transfer reaction is in constant flux, potentially changing with each adaptation of the catalytic scaffold to a new phosphoryl-donor-acceptor pair. Phosphotransferases of the recently discovered haloacid dehalogenase superfamily of enzymes, one of the largest and most ubiquitous of the phosphotransferase families characterized to date, are described in the context of the co-evolution of the catalytic scaffold and mechanism. << Less
-
Biochemical and structural characterization reveals Rv3400 codes for beta-phosphoglucomutase in Mycobacterium tuberculosis.
Singh L., Karthikeyan S., Thakur K.G.
Mycobacterium tuberculosis (Mtb) adapt to various host environments and utilize a variety of sugars and lipids as carbon sources. Among these sugars, maltose and trehalose, also play crucial role in bacterial physiology and virulence. However, some key enzymes involved in trehalose and maltose met ... >> More
Mycobacterium tuberculosis (Mtb) adapt to various host environments and utilize a variety of sugars and lipids as carbon sources. Among these sugars, maltose and trehalose, also play crucial role in bacterial physiology and virulence. However, some key enzymes involved in trehalose and maltose metabolism in Mtb are not yet known. Here we structurally and functionally characterized a conserved hypothetical gene Rv3400. We determined the crystal structure of Rv3400 at 1.7 Å resolution. The crystal structure revealed that Rv3400 adopts Rossmann fold and shares high structural similarity with haloacid dehalogenase family of proteins. Our comparative structural analysis suggested that Rv3400 could perform either phosphatase or pyrophosphatase or β-phosphoglucomutase (β-PGM) activity. Using biochemical studies, we further confirmed that Rv3400 performs β-PGM activity and hence, Rv3400 encodes for β-PGM in Mtb. Our data also confirm that Mtb β-PGM is a metal dependent enzyme having broad specificity for divalent metal ions. β-PGM converts β-D-glucose-1-phosphate to β-D-glucose-6-phosphate which is required for the generation of ATP and NADPH through glycolysis and pentose phosphate pathway, respectively. Using site directed mutagenesis followed by biochemical studies, we show that two Asp residues in the highly conserved DxD motif, D29 and D31, are crucial for enzyme activity. While D29A, D31A, D29E, D31E and D29N mutants lost complete activity, D31N mutant retained about 30% activity. This study further helps in understanding the role of β-PGM in the physiology of Mtb. << Less
-
Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis.
Zhang G., Dai J., Wang L., Dunaway-Mariano D., Tremblay L.W., Allen K.N.
Lactococcus lactis beta-phosphoglucomutase (beta-PGM) catalyzes the interconversion of beta-d-glucose 1-phosphate (beta-G1P) and beta-d-glucose 6-phosphate (G6P), forming beta-d-glucose 1,6-(bis)phosphate (beta-G16P) as an intermediate. Beta-PGM conserves the core domain catalytic scaffold of the ... >> More
Lactococcus lactis beta-phosphoglucomutase (beta-PGM) catalyzes the interconversion of beta-d-glucose 1-phosphate (beta-G1P) and beta-d-glucose 6-phosphate (G6P), forming beta-d-glucose 1,6-(bis)phosphate (beta-G16P) as an intermediate. Beta-PGM conserves the core domain catalytic scaffold of the phosphatase branch of the HAD (haloalkanoic acid dehalogenase) enzyme superfamily, yet it has evolved to function as a mutase rather than as a phosphatase. This work was carried out to identify the structural basis underlying this diversification of function. In this paper, we examine beta-PGM activation by the Mg(2+) cofactor, beta-PGM activation by Asp8 phosphorylation, and the role of cap domain closure in substrate discrimination. First, the 1.90 A resolution X-ray crystal structure of the Mg(2+)-beta-PGM complex is examined in the context of previously reported structures of the Mg(2+)-alpha-d-galactose-1-phosphate-beta-PGM, Mg(2+)-phospho-beta-PGM, and Mg(2+)-beta-glucose-6-phosphate-1-phosphorane-beta-PGM complexes to identify conformational changes that occur during catalytic turnover. The essential role of Asp8 in nucleophilic catalysis was confirmed by demonstrating that the D8A and D8E mutants are devoid of catalytic activity. Comparison of the ligands to Mg(2+) in the different complexes shows that a single Mg(2+) coordination site must alternatively accommodate water, phosphate, and the phosphorane intermediate during catalytic turnover. Limited involvement of the HAD family metal-binding loop in Mg(2+) anchoring in beta-PGM is consistent with the relatively loose binding indicated by the large K(m) for Mg(2+) activation (270 +/-20 microM) and with the retention of activity found in the E169A/D170A double loop mutant. Comparison of the relative positions of cap and core domains in the different complexes indicated that interaction of cap domain Arg49 with the "nontransferring" phosphoryl group of the substrate ligand might stabilize the cap-closed conformation, as required for active site desolvation and alignment of Asp10 for acid-base catalysis. Kinetic analyses of the specificity of beta-PGM toward phosphoryl group donors and the specificity of phospho-beta-PGM toward phosphoryl group acceptors were carried out. The results support a substrate induced-fit mechanism of beta-PGM catalysis, which allows phosphomutase activity to dominate over the intrinsic phosphatase activity. Last, we present evidence that the autophosphorylation of beta-PGM by the substrate beta-G1P accounts for the origin of phospho-beta-PGM in the cell. << Less