Enzymes
UniProtKB help_outline | 5,706 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
guanosine18 in tRNA
Identifier
RHEA-COMP:10190
Reactive part
help_outline
- Name help_outline GMP residue Identifier CHEBI:74269 Charge -1 Formula C10H11N5O7P Positionhelp_outline 18 SMILEShelp_outline C1(=O)NC(=NC2=C1N=CN2[C@@H]3O[C@H](COP(=O)(*)[O-])[C@@H](O*)[C@H]3O)N 2D coordinates Mol file for the small molecule Search links Involved in 42 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 904 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
2'-O-methylguanosine18 in tRNA
Identifier
RHEA-COMP:10192
Reactive part
help_outline
- Name help_outline 2'-O-methylguanosine 5'-phosphate residue Identifier CHEBI:74445 Charge -1 Formula C11H13N5O7P Positionhelp_outline 18 SMILEShelp_outline C1(=O)NC(=NC2=C1N=CN2[C@@H]3O[C@H](COP(=O)(*)[O-])[C@@H](O*)[C@H]3OC)N 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 827 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:20077 | RHEA:20078 | RHEA:20079 | RHEA:20080 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The in vitro synthesis of 2'-omethylguanosine and 2-methylthio 6N (gamma,gamma, dimethylallyl) adenosine in transfer RNA of Escherichia coli.
Gefter M.L.
Biochem Biophys Res Commun 36:435-441(1969) [PubMed] [EuropePMC]
-
Substrate recognition of tRNA (Guanosine-2'-)-methyltransferase from Thermus thermophilus HB27.
Hori H., Yamazaki N., Matsumoto T., Watanabe Y., Ueda T., Nishikawa K., Kumagai I., Watanabe K.
Transfer RNA (guanosine-2'-)-methyltransferase (Gm-methylase, EC 2.1. 1.32) from Thermus thermophilus HB27 is one of the tRNA ribose modification enzymes. The broad substrate specificity of Gm-methylase has so far been elucidated using various species of tRNAs from native sources, suggesting that ... >> More
Transfer RNA (guanosine-2'-)-methyltransferase (Gm-methylase, EC 2.1. 1.32) from Thermus thermophilus HB27 is one of the tRNA ribose modification enzymes. The broad substrate specificity of Gm-methylase has so far been elucidated using various species of tRNAs from native sources, suggesting that the common structures in tRNAs are recognized by the enzyme. In this study, by using 28 yeast tRNAPhe variants obtained by transcription with T7 RNA polymerase, it was revealed that the nucleotide residues G18 and G19 and the D-stem structure are essentially required for Gm-methylase recognition, and that the key sequence for the substrate is pyrimidine (Py)17G18G19. The other conserved sequences were found not to be essential, but U8, G15, G26, G46, U54, U55, and C56 considerably affected the methylation efficiency. These residues are located within a limited space embedded in the L-shaped three-dimensional structure of tRNA. Therefore, disruption of the three-dimensional structure of the substrate tRNA is necessary for the catalytic center of Gm-methylase to be able to access the target site in the tRNA, suggesting that the interaction of Gm-methylase with tRNA consists of multiple steps. This postulation was confirmed by inhibition experiments using nonsubstrate tRNA variants which functioned as competitive inhibitors against usual substrate tRNAs. << Less