Reaction participants Show >> << Hide
-
Name help_outline
(1,4-β-D-glucosyl)n
Identifier
CHEBI:18246
(CAS: 9004-34-6)
help_outline
Charge
0
Formula
(C6H10O5)nH2O
Search links
Involved in 3 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:10033Polymer name: [(1→4)-β-D-glucosyl](n)Polymerization index help_outline nFormula H2O(C6H10O5)nCharge (0)(0)nMol File for the polymer
-
Identifier: RHEA-COMP:10034Polymer name: [(1→4)-β-D-glucosyl](n+1)Polymerization index help_outline n+1Formula H2O(C6H10O5)n+1Charge (0)(0)n+1Mol File for the polymer
-
- Name help_outline UDP-α-D-glucose Identifier CHEBI:58885 (Beilstein: 3827329) help_outline Charge -2 Formula C15H22N2O17P2 InChIKeyhelp_outline HSCJRCZFDFQWRP-JZMIEXBBSA-L SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 231 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 577 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19929 | RHEA:19930 | RHEA:19931 | RHEA:19932 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
-
RHEA:63061
5-methylorsellinate + ATP + NADPH + H+ => 2,4-dihydroxy 5,6-dimethylbenzaldehyde + AMP + diphosphate + NADP+
Publications
-
Crystallographic snapshot of cellulose synthesis and membrane translocation.
Morgan J.L., Strumillo J., Zimmer J.
Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, ... >> More
Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time. << Less
-
Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP.
Morgan J.L., McNamara J.T., Zimmer J.
The bacterial signaling molecule cyclic di-GMP (c-di-GMP) stimulates the synthesis of bacterial cellulose, which is frequently found in biofilms. Bacterial cellulose is synthesized and translocated across the inner membrane by a complex of cellulose synthase BcsA and BcsB subunits. Here we present ... >> More
The bacterial signaling molecule cyclic di-GMP (c-di-GMP) stimulates the synthesis of bacterial cellulose, which is frequently found in biofilms. Bacterial cellulose is synthesized and translocated across the inner membrane by a complex of cellulose synthase BcsA and BcsB subunits. Here we present crystal structures of the c-di-GMP-activated BcsA-BcsB complex. The structures reveal that c-di-GMP releases an autoinhibited state of the enzyme by breaking a salt bridge that otherwise tethers a conserved gating loop that controls access to and substrate coordination at the active site. Disrupting the salt bridge by mutagenesis generates a constitutively active cellulose synthase. Additionally, the c-di-GMP-activated BcsA-BcsB complex contains a nascent cellulose polymer whose terminal glucose unit rests at a new location above BcsA's active site and is positioned for catalysis. Our mechanistic insights indicate how c-di-GMP allosterically modulates enzymatic functions. << Less
-
BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis.
Omadjela O., Narahari A., Strumillo J., Melida H., Mazur O., Bulone V., Zimmer J.
Cellulose is a linear extracellular polysaccharide. It is synthesized by membrane-embedded glycosyltransferases that processively polymerize UDP-activated glucose. Polymer synthesis is coupled to membrane translocation through a channel formed by the cellulose synthase. Although eukaryotic cellulo ... >> More
Cellulose is a linear extracellular polysaccharide. It is synthesized by membrane-embedded glycosyltransferases that processively polymerize UDP-activated glucose. Polymer synthesis is coupled to membrane translocation through a channel formed by the cellulose synthase. Although eukaryotic cellulose synthases function in macromolecular complexes containing several different enzyme isoforms, prokaryotic synthases associate with additional subunits to bridge the periplasm and the outer membrane. In bacteria, cellulose synthesis and translocation is catalyzed by the inner membrane-associated bacterial cellulose synthase (Bcs)A and BcsB subunits. Similar to alginate and poly-β-1,6 N-acetylglucosamine, bacterial cellulose is implicated in the formation of sessile bacterial communities, termed biofilms, and its synthesis is likewise stimulated by cyclic-di-GMP. Biochemical studies of exopolysaccharide synthesis are hampered by difficulties in purifying and reconstituting functional enzymes. We demonstrate robust in vitro cellulose synthesis reconstituted from purified BcsA and BcsB proteins from Rhodobacter sphaeroides. Although BcsA is the catalytically active subunit, the membrane-anchored BcsB subunit is essential for catalysis. The purified BcsA-B complex produces cellulose chains of a degree of polymerization in the range 200-300. Catalytic activity critically depends on the presence of the allosteric activator cyclic-di-GMP, but is independent of lipid-linked reactants. Our data reveal feedback inhibition of cellulose synthase by UDP but not by the accumulating cellulose polymer and highlight the strict substrate specificity of cellulose synthase for UDP-glucose. A truncation analysis of BcsB localizes the region required for activity of BcsA within its C-terminal membrane-associated domain. The reconstituted reaction provides a foundation for the synthesis of biofilm exopolysaccharides, as well as its activation by cyclic-di-GMP. << Less
Proc Natl Acad Sci U S A 110:17856-17861(2013) [PubMed] [EuropePMC]
-
The synthesis of cellulose in cell-free extracts of Acetobacter xylinum.
GLASER L.
Comments
cellulose is a linear polymer of glucose molecules, [(1→4)-β-D-glucosyl](n).