Enzymes
UniProtKB help_outline | 3,728 proteins |
Reaction participants Show >> << Hide
- Name help_outline L-arginine Identifier CHEBI:32682 Charge 1 Formula C6H15N4O2 InChIKeyhelp_outline ODKSFYDXXFIFQN-BYPYZUCNSA-O SMILEShelp_outline NC(=[NH2+])NCCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 72 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-citrulline Identifier CHEBI:57743 Charge 0 Formula C6H13N3O3 InChIKeyhelp_outline RHGKLRLOHDJJDR-BYPYZUCNSA-N SMILEShelp_outline NC(=O)NCCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline nitric oxide Identifier CHEBI:16480 (CAS: 10102-43-9) help_outline Charge 0 Formula NO InChIKeyhelp_outline MWUXSHHQAYIFBG-UHFFFAOYSA-N SMILEShelp_outline [N]=O 2D coordinates Mol file for the small molecule Search links Involved in 23 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19897 | RHEA:19898 | RHEA:19899 | RHEA:19900 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum.
Agapie T., Suseno S., Woodward J.J., Stoll S., Britt R.D., Marletta M.A.
The role of nitric oxide (NO) in the host response to infection and in cellular signaling is well established. Enzymatic synthesis of NO is catalyzed by the nitric oxide synthases (NOSs), which convert Arg into NO and citrulline using co-substrates O2 and NADPH. Mammalian NOS contains a flavin red ... >> More
The role of nitric oxide (NO) in the host response to infection and in cellular signaling is well established. Enzymatic synthesis of NO is catalyzed by the nitric oxide synthases (NOSs), which convert Arg into NO and citrulline using co-substrates O2 and NADPH. Mammalian NOS contains a flavin reductase domain (FAD and FMN) and a catalytic heme oxygenase domain (P450-type heme and tetrahydrobiopterin). Bacterial NOSs, while much less studied, were previously identified as only containing the heme oxygenase domain of the more complex mammalian NOSs. We report here on the characterization of a NOS from Sorangium cellulosum (both full-length, scNOS, and oxygenase domain, scNOSox). scNOS contains a catalytic, oxygenase domain similar to those found in the mammalian NOS and in other bacteria. Unlike the other bacterial NOSs reported to date, however, this protein contains a fused reductase domain. The scNOS reductase domain is unique for the entire NOS family because it utilizes a 2Fe2S cluster for electron transfer. scNOS catalytically produces NO and citrulline in the presence of either tetrahydrobiopterin or tetrahydrofolate. These results establish a bacterial electron transfer pathway used for biological NO synthesis as well as a unique flexibility in using different tetrahydropterin cofactors for this reaction. << Less
Proc Natl Acad Sci U S A 106:16221-16226(2009) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Oxygen reduction by nitric-oxide synthases.
Stuehr D., Pou S., Rosen G.M.
-
Bacterial nitric-oxide synthases operate without a dedicated redox partner.
Gusarov I., Starodubtseva M., Wang Z.Q., McQuade L., Lippard S.J., Stuehr D.J., Nudler E.
Bacterial nitric-oxide (NO) synthases (bNOSs) are smaller than their mammalian counterparts. They lack an essential reductase domain that supplies electrons during NO biosynthesis. This and other structural peculiarities have raised doubts about whether bNOSs were capable of producing NO in vivo. ... >> More
Bacterial nitric-oxide (NO) synthases (bNOSs) are smaller than their mammalian counterparts. They lack an essential reductase domain that supplies electrons during NO biosynthesis. This and other structural peculiarities have raised doubts about whether bNOSs were capable of producing NO in vivo. Here we demonstrate that bNOS enzymes from Bacillus subtilis and Bacillus anthracis do indeed produce NO in living cells and accomplish this task by hijacking available cellular redox partners that are not normally committed to NO production. These "promiscuous" bacterial reductases also support NO synthesis by the oxygenase domain of mammalian NOS expressed in Escherichia coli. Our results suggest that bNOS is an early precursor of eukaryotic NOS and that it acquired its dedicated reductase domain later in evolution. This work also suggests that alternatively spliced forms of mammalian NOSs lacking their reductase domains could still be functional in vivo. On a practical side, bNOS-containing probiotic bacteria offer a unique advantage over conventional chemical NO donors in generating continuous, readily controllable physiological levels of NO, suggesting a possibility of utilizing such live NO donors for research and clinical needs. << Less
J Biol Chem 283:13140-13147(2008) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
N omega-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine.
Stuehr D.J., Kwon N.S., Nathan C.F., Griffith O.W., Feldman P.L., Wiseman J.
Authentic N omega-hydroxy-L-arginine was synthesized and used to determine whether it is an intermediate in nitric oxide (.NO) synthesis from L-arginine by macrophage .NO synthase. The apparent Km (6.6 microM) and Vmax (99 nmol x min-1 x mg-1) observed with N omega-hydroxy-L-arginine were similar ... >> More
Authentic N omega-hydroxy-L-arginine was synthesized and used to determine whether it is an intermediate in nitric oxide (.NO) synthesis from L-arginine by macrophage .NO synthase. The apparent Km (6.6 microM) and Vmax (99 nmol x min-1 x mg-1) observed with N omega-hydroxy-L-arginine were similar to those observed with L-arginine (Km = 2.3 microM; Vmax = 54 mumol x min-1 x mg-1). N omega-Hydroxy-D-arginine was not a substrate. Stable isotope studies showed that .NO synthase exclusively oxidized the hydroxylated nitrogen of N omega-hydroxy-L-arginine, forming .NO and L-citrulline. As with L-arginine, O2 was the source of the ureido oxygen in L-citrulline from N omega-hydroxy-L-arginine. In the presence of excess N omega-hydroxy-L-arginine, .NO synthase generated a metabolite of L-[14C]arginine that cochromatographed with authentic N omega-hydroxy-L-arginine. The labeled metabolite exhibited identical chromatographic behavior in three solvent systems and generated the same product (L-citrulline) upon alkaline hydrolysis as authentic N omega-hydroxy-L-arginine. Experiments were then run to identify which redox cofactor (NADPH or tetrahydrobiopterin) participated in the enzymatic synthesis of N omega-hydroxy-L-arginine. Both cofactors were required for synthesis of .NO from either N omega-hydroxy-L-arginine or L-arginine. However, with L-arginine, the synthesis of 1 mol of .NO was coupled to the oxidation of 1.52 +/-0.02 mol of NADPH; whereas with N omega-hydroxy-L-arginine, only 0.53 +/-0.04 mol of NADPH was oxidized per mol of .NO formed. These results support a mechanism in which N omega-hydroxy-L-arginine is generated as an intermediate in .NO synthesis through an NADPH-dependent hydroxylation of L-arginine. << Less
-
Bacterial flavodoxins support nitric oxide production by Bacillus subtilis nitric-oxide synthase.
Wang Z.Q., Lawson R.J., Buddha M.R., Wei C.C., Crane B.R., Munro A.W., Stuehr D.J.
Unlike animal nitric-oxide synthases (NOSs), the bacterial NOS enzymes have no attached flavoprotein domain to reduce their heme and so must rely on unknown bacterial proteins for electrons. We tested the ability of two Bacillus subtilis flavodoxins (YkuN and YkuP) to support catalysis by purified ... >> More
Unlike animal nitric-oxide synthases (NOSs), the bacterial NOS enzymes have no attached flavoprotein domain to reduce their heme and so must rely on unknown bacterial proteins for electrons. We tested the ability of two Bacillus subtilis flavodoxins (YkuN and YkuP) to support catalysis by purified B. subtilis NOS (bsNOS). When an NADPH-utilizing bacterial flavodoxin reductase (FLDR) was added to reduce YkuP or YkuN, both supported NO synthesis from either L-arginine or N-hydroxyarginine and supported a linear nitrite accumulation over a 30-min reaction period. Rates of nitrite production were directly dependent on the ratio of YkuN or YkuP to bsNOS. However, the V/Km value for YkuN (5.2 x 10(5)) was about 20 times greater than that of YkuP (2.6 x 10(4)), indicating YkuN is more efficient in supporting bsNOS catalysis. YkuN that was either photo-reduced or prereduced by FLDR transferred an electron to the bsNOS ferric heme at rates similar to those measured for heme reduction in the animal NOSs. YkuN supported a similar NO synthesis activity by a different bacterial NOS (Deinococcus radiodurans) but not by any of the three mammalian NOS oxygenase domains nor by an insect NOS oxygenase domain. Our results establish YkuN as a kinetically competent redox partner for bsNOS and suggest that FLDR/flavodoxin proteins could function physiologically to support catalysis by bacterial NOSs. << Less
J Biol Chem 282:2196-2202(2007) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent.
Foresi N., Correa-Aragunde N., Parisi G., Calo G., Salerno G., Lamattina L.
The search for a nitric oxide synthase (NOS) sequence in the plant kingdom yielded two sequences from the recently published genomes of two green algae species of the Ostreococcus genus, O. tauri and O. lucimarinus. In this study, we characterized the sequence, protein structure, phylogeny, bioche ... >> More
The search for a nitric oxide synthase (NOS) sequence in the plant kingdom yielded two sequences from the recently published genomes of two green algae species of the Ostreococcus genus, O. tauri and O. lucimarinus. In this study, we characterized the sequence, protein structure, phylogeny, biochemistry, and expression of NOS from O. tauri. The amino acid sequence of O. tauri NOS was found to be 45% similar to that of human NOS. Folding assignment methods showed that O. tauri NOS can fold as the human endothelial NOS isoform. Phylogenetic analysis revealed that O. tauri NOS clusters together with putative NOS sequences of a Synechoccocus sp strain and Physarum polycephalum. This cluster appears as an outgroup of NOS representatives from metazoa. Purified recombinant O. tauri NOS has a K(m) for the substrate l-Arg of 12 ± 5 μM. Escherichia coli cells expressing recombinant O. tauri NOS have increased levels of NO and cell viability. O. tauri cultures in the exponential growth phase produce 3-fold more NOS-dependent NO than do those in the stationary phase. In O. tauri, NO production increases in high intensity light irradiation and upon addition of l-Arg, suggesting a link between NOS activity and microalgal physiology. << Less
-
Direct evidence for nitric oxide production by a nitric-oxide synthase-like protein from Bacillus subtilis.
Adak S., Aulak K.S., Stuehr D.J.
Nitric-oxide synthases (NOSs) are widely distributed among prokaryotes and eukaryotes and have diverse functions in physiology. Recent genome sequencing revealed NOS-like protein in bacteria, but whether these proteins generate nitric oxide is unknown. We therefore cloned, expressed, and purified ... >> More
Nitric-oxide synthases (NOSs) are widely distributed among prokaryotes and eukaryotes and have diverse functions in physiology. Recent genome sequencing revealed NOS-like protein in bacteria, but whether these proteins generate nitric oxide is unknown. We therefore cloned, expressed, and purified a NOS-like protein from Bacillus subtilis (bsNOS) and characterized its catalytic parameters in both multiple and single turnover reactions. bsNOS was dimeric, bound l-Arg and 6R-tetrahydrobiopterin with similar affinity as mammalian NOS, and generated nitrite from l-Arg when incubated with NADPH and a mammalian NOS reductase domain. Stopped-flow analysis showed that ferrous bsNOS reacted with O(2) to form a transient heme Fe(II)O(2) species in the presence of either Arg or the reaction intermediate N-hydroxy-l-arginine. In the latter case, disappearance of the Fe(II)O(2) species was kinetically and quantitatively coupled to formation of a transient heme Fe(III)NO product, which then dissociated to form ferric bsNOS. This behavior mirrors mammalian NOS enzymes and unambiguously shows that bsNOS can generate NO. NO formation required a bound tetrahydropteridine, and the kinetic effects of this cofactor were consistent with it donating an electron to the Fe(II)O(2) intermediate during the reaction. Dissociation of the heme Fe(III)NO product was much slower in bsNOS than in mammalian NOS. This constrains allowable rates of ferric heme reduction by a protein redox partner and underscores the utility of using a tetrahydropteridine electron donor in bsNOS. << Less
J. Biol. Chem. 277:16167-16171(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
Comments
Multi-step reaction: RHEA:24660 and RHEA:24664.