Reaction participants Show >> << Hide
- Name help_outline α-D-glucose 1-phosphate Identifier CHEBI:58601 (Beilstein: 3560164) help_outline Charge -2 Formula C6H11O9P InChIKeyhelp_outline HXXFSFRBOHSIMQ-VFUOTHLCSA-L SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 41 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UTP Identifier CHEBI:46398 (Beilstein: 5204708) help_outline Charge -4 Formula C9H11N2O15P3 InChIKeyhelp_outline PGAVKCOVUIYSFO-XVFCMESISA-J SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 50 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-glucose Identifier CHEBI:58885 (Beilstein: 3827329) help_outline Charge -2 Formula C15H22N2O17P2 InChIKeyhelp_outline HSCJRCZFDFQWRP-JZMIEXBBSA-L SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 231 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19889 | RHEA:19890 | RHEA:19891 | RHEA:19892 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Production of ibuprofen acyl glucosides by human UGT2B7.
Buchheit D., Dragan C.A., Schmitt E.I., Bureik M.
UDP-glycosyltransferases (UGTs) are an important group of enzymes that participate in phase II metabolism of xenobiotics and use the cofactor UDP-glucuronic acid for the production of glucuronides. When acting on molecules bearing a carboxylic acid they can form acyl glucuronides, a group of metab ... >> More
UDP-glycosyltransferases (UGTs) are an important group of enzymes that participate in phase II metabolism of xenobiotics and use the cofactor UDP-glucuronic acid for the production of glucuronides. When acting on molecules bearing a carboxylic acid they can form acyl glucuronides, a group of metabolites that has gained significant interest in recent years because of concerns about their potential role in drug toxicity. In contrast, reports about the production of drug acyl glucosides (which might also display high reactivity) have been scarce. In this study, we discovered the formation of acyl glycoside metabolites of R- and S-ibuprofen (Ibu) by human liver microsomes supplied with the cofactor UDP-glucose. Subsequently, human UGT2B7*1 and UGT2B7*2 recombinantly expressed in fission yeast Schizosaccharomyces pombe could be shown to catalyze these reactions. Moreover, we could enhance the glucoside production rate in fission yeast by overexpressing the fission yeast gene SPCC1322.04, a potential UDP-glucose pyrophosphorylase (UGPase), but not by overexpression of SPCC794.10, and therefore suggest to name this gene fyu1 for fission yeast UGPase1. It was interesting to note that pronounced differences between the two polymorphic UGT2B7 variants were observed with respect to acyl glucoside production. Finally, using the metabolic precursor [(13)C(6)]glucose, we demonstrated the production of stable isotope-labeled reference standards of Ibu acyl glucoside and Ibu acyl glucuronide by whole-cell biotransformation in fission yeast. << Less
-
Identification and characterization of a strict and a promiscuous N-acetylglucosamine-1-P uridylyltransferase in Arabidopsis.
Yang T., Echols M., Martin A., Bar-Peled M.
UDP-GlcNAc is an essential precursor for glycoprotein and glycolipid synthesis. In the present study, a functional nucleotidyltransferase gene from Arabidopsis encoding a 58.3 kDa GlcNAc1pUT-1 (N-acetylglucosamine-1-phosphate uridylyltransferase) was identified. In the forward reaction the enzyme ... >> More
UDP-GlcNAc is an essential precursor for glycoprotein and glycolipid synthesis. In the present study, a functional nucleotidyltransferase gene from Arabidopsis encoding a 58.3 kDa GlcNAc1pUT-1 (N-acetylglucosamine-1-phosphate uridylyltransferase) was identified. In the forward reaction the enzyme catalyses the formation of UDP-N-acetylglucosamine and PPi from the respective monosaccharide 1-phosphate and UTP. The enzyme can utilize the 4-epimer UDP-GalNAc as a substrate as well. The enzyme requires divalent ions (Mg2+ or Mn2+) for activity and is highly active between pH 6.5 and 8.0, and at 30-37 degrees C. The apparent Km values for the forward reaction were 337 microM (GlcNAc-1-P) and 295 microM (UTP) respectively. Another GlcNAc1pUT-2, which shares 86% amino acid sequence identity with GlcNAc1pUT-1, was found to convert, in addition to GlcNAc-1-P and GalNAc-1-P, Glc-1-P into corresponding UDP-sugars, suggesting that subtle changes in the UT family cause different substrate specificities. A three-dimensional protein structure model using the human AGX1 as template showed a conserved catalytic fold and helped identify key conserved motifs, despite the high sequence divergence. The identification of these strict and promiscuous gene products open a window to identify new roles of amino sugar metabolism in plants and specifically their role as signalling molecules. The ability of GlcNAc1pUT-2 to utilize three different substrates may provide further understanding as to why biological systems have plasticity. << Less
Biochem. J. 430:275-284(2010) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
CugP is a novel ubiquitous non-GalU-type bacterial UDP-glucose pyrophosphorylase found in cyanobacteria.
Maeda K., Narikawa R., Ikeuchi M.
UDP-glucose pyrophosphorylase synthesizes UDP-glucose from UTP and glucose 1-phosphate and exists in almost all species. Most bacteria possess a GalU-type UDP-glucose pyrophosphorylase, whereas many cyanobacteria species do not. In certain cyanobacteria, UDP-glucose is used as a substrate for synt ... >> More
UDP-glucose pyrophosphorylase synthesizes UDP-glucose from UTP and glucose 1-phosphate and exists in almost all species. Most bacteria possess a GalU-type UDP-glucose pyrophosphorylase, whereas many cyanobacteria species do not. In certain cyanobacteria, UDP-glucose is used as a substrate for synthesis of exopolysaccharide cellulose in spite of the absence of GalU-type UDP-glucose pyrophosphorylase. Therefore, there should be an uncharacterized UDP-glucose pyrophosphorylase in cyanobacteria. Here, we show that all cyanobacteria possess a non-GalU-type bacterial UDP-glucose pyrophosphorylase, i.e., CugP, a novel family in the nucleotide triphosphate transferase superfamily. The expressed recombinant Synechocystis sp. strain PCC 6803 CugP had pyrophosphorylase activity that was highly specific for UTP and glucose 1-phosphate. The fact that the CugP gene cannot be deleted completely in Synechocystis sp. PCC 6803 suggests its central role as the substrate supplier for galactolipid synthesis. Galactolipids are major constituents of the photosynthetic thylakoid membrane and important for photosynthetic activity. Based on phylogenetic analysis, this CugP-type UDP-glucose pyrophosphorylase may have recently been horizontally transferred to certain noncyanobacteria. << Less
-
N-glycosylation in Archaea: on the coordinated actions of Haloferax volcanii AglF and AglM.
Yurist-Doutsch S., Magidovich H., Ventura V.V., Hitchen P.G., Dell A., Eichler J.
Like Eukarya and Bacteria, Archaea are also capable of performing N-glycosylation. In the halophilic archaeon Haloferax volcanii, N-glycosylation is mediated by the products of the agl gene cluster. In the present report, this gene cluster was expanded to include an additional sequence, aglM, show ... >> More
Like Eukarya and Bacteria, Archaea are also capable of performing N-glycosylation. In the halophilic archaeon Haloferax volcanii, N-glycosylation is mediated by the products of the agl gene cluster. In the present report, this gene cluster was expanded to include an additional sequence, aglM, shown to participate in the biosynthesis of hexuronic acids contained within a pentasaccharide decorating the S-layer glycoprotein, a reporter H. volcanii glycoprotein. In response to different growth conditions, changes in the transcription profile of aglM mirrored changes in the transcription profiles of aglF, aglG and aglI, genes encoding confirmed participants in the H. volcanii N-glycosylation pathway, thus offering support to the hypothesis that in H. volcanii, N-glycosylation serves an adaptive role. Following purification, biochemical analysis revealed AglM to function as a UDP-glucose dehydrogenase. In a scoupled reaction with AglF, a previously identified glucose-1-phosphate uridyltransferase, UDP-glucuronic acid was generated from glucose-1-phosphate and UTP in a NAD(+)-dependent manner. These experiments thus represent the first step towards in vitro reconstitution of the archaeal N-glycosylation process. << Less
-
Properties and physiological functions of UDP-sugar pyrophosphorylase in Arabidopsis.
Kotake T., Hojo S., Yamaguchi D., Aohara T., Konishi T., Tsumuraya Y.
UDP-sugar pyrophosphorylase catalyzes the conversion of various monosaccharide 1-phosphates to the respective UDP-sugars in the salvage pathway. Using the genomic database, we cloned a putative gene for UDP-sugar pyrophosphorylase from Arabidopsis. Although relatively stronger expression was detec ... >> More
UDP-sugar pyrophosphorylase catalyzes the conversion of various monosaccharide 1-phosphates to the respective UDP-sugars in the salvage pathway. Using the genomic database, we cloned a putative gene for UDP-sugar pyrophosphorylase from Arabidopsis. Although relatively stronger expression was detected in the vascular tissue of leaves and the pollen, AtUSP is expressed in most cell types of Arabidopsis, indicating a housekeeping function in nucleotide sugar metabolism. Recombinant AtUSP expressed in Escherichia coli exhibited broad specificity toward monosaccharide 1-phosphates, resulting in the formation of various UDP-sugars such as UDP-glucose, -galactose, -glucuronic acid, -xylose and -L-arabinose. A loss-of-function mutation in the AtUSP gene caused by T-DNA insertion completely abolished male fertility. These results indicate that AtUSP functions as a UDP-sugar pyrophosphorylase in the salvage pathway, and that the generation of UDP-sugars from monosaccharide 1-phosphates catalyzed by AtUSP is essential for pollen development in Arabidopsis. << Less
Biosci. Biotechnol. Biochem. 71:761-771(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
CryoEM analysis of the essential native UDP-glucose pyrophosphorylase from <i>Aspergillus nidulans</i> reveals key conformations for activity regulation and function.
Han X., D'Angelo C., Otamendi A., Cifuente J.O., de Astigarraga E., Ochoa-Lizarralde B., Grininger M., Routier F.H., Guerin M.E., Fuehring J., Etxebeste O., Connell S.R.
Invasive aspergillosis is one of the most serious clinical invasive fungal infections, resulting in a high case fatality rate among immunocompromised patients. The disease is caused by saprophytic molds in the genus <i>Aspergillus</i>, including <i>Aspergillus fumigatus</i>, the most significant p ... >> More
Invasive aspergillosis is one of the most serious clinical invasive fungal infections, resulting in a high case fatality rate among immunocompromised patients. The disease is caused by saprophytic molds in the genus <i>Aspergillus</i>, including <i>Aspergillus fumigatus</i>, the most significant pathogenic species. The fungal cell wall, an essential structure mainly composed of glucan, chitin, galactomannan, and galactosaminogalactan, represents an important target for the development of antifungal drugs. UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) is a central enzyme in the metabolism of carbohydrates that catalyzes the biosynthesis of UDP-glucose, a key precursor of fungal cell wall polysaccharides. Here, we demonstrate that the function of UGP is vital for <i>Aspergillus nidulans</i> (<i>An</i>UGP). To understand the molecular basis of <i>An</i>UGP function, we describe a cryoEM structure (global resolution of 3.5 Å for the locally refined subunit and 4 Å for the octameric complex) of a native <i>An</i>UGP. The structure reveals an octameric architecture with each subunit comprising an N-terminal α-helical domain, a central catalytic glycosyltransferase A-like (GT-A-like) domain, and a C-terminal (CT) left-handed β-helix oligomerization domain. <i>An</i>UGP displays unprecedented conformational variability between the CT oligomerization domain and the central GT-A-like catalytic domain. In combination with activity measurements and bioinformatics analysis, we unveil the molecular mechanism of substrate recognition and specificity for <i>An</i>UGP. Altogether, our study not only contributes to understanding the molecular mechanism of catalysis/regulation of an important class of enzymes but also provides the genetic, biochemical, and structural groundwork for the future exploitation of UGP as a potential antifungal target. IMPORTANCE Fungi cause diverse diseases in humans, ranging from allergic syndromes to life-threatening invasive diseases, together affecting more than a billion people worldwide. Increasing drug resistance in <i>Aspergillus</i> species represents an emerging global health threat, making the design of antifungals with novel mechanisms of action a worldwide priority. The cryoEM structure of UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) from the filamentous fungus <i>Aspergillus nidulans</i> reveals an octameric architecture displaying unprecedented conformational variability between the C-terminal oligomerization domain and the central glycosyltransferase A-like catalytic domain in the individual protomers. While the active site and oligomerization interfaces are more highly conserved, these dynamic interfaces include motifs restricted to specific clades of filamentous fungi. Functional study of these motifs could lead to the definition of new targets for antifungals inhibiting UGP activity and, thus, the architecture of the cell wall of filamentous fungal pathogens. << Less
-
A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis.
Okazaki Y., Shimojima M., Sawada Y., Toyooka K., Narisawa T., Mochida K., Tanaka H., Matsuda F., Hirai A., Hirai M.Y., Ohta H., Saito K.
Plants synthesize a sulfur-containing lipid, sulfoquinovosyldiacylglycerol, which is one of three nonphosphorus glycerolipids that provide the bulk of the structural lipids in photosynthetic membranes. Here, the identification of a novel gene, UDP-glucose pyrophosphorylase3 (UGP3), required for su ... >> More
Plants synthesize a sulfur-containing lipid, sulfoquinovosyldiacylglycerol, which is one of three nonphosphorus glycerolipids that provide the bulk of the structural lipids in photosynthetic membranes. Here, the identification of a novel gene, UDP-glucose pyrophosphorylase3 (UGP3), required for sulfolipid biosynthesis is described. Transcriptome coexpression analysis demonstrated highly correlated expression of UGP3 with known genes for sulfolipid biosynthesis in Arabidopsis thaliana. Liquid chromatography-mass spectrometry analysis of leaf lipids in two Arabidopsis ugp3 mutants revealed that no sulfolipid was accumulated in these mutants, indicating the participation of UGP3 in sulfolipid biosynthesis. From the deduced amino acid sequence, UGP3 was presumed to be a UDP-glucose pyrophosphorylase (UGPase) involved in the generation of UDP-glucose, serving as the precursor of the polar head of sulfolipid. Recombinant UGP3 was able to catalyze the formation of UDP-glucose from glucose-1-phosphate and UTP. A transient assay using fluorescence fusion proteins and UGPase activity in isolated chloroplasts indicated chloroplastic localization of UGP3. The transcription level of UGP3 was increased by phosphate starvation. A comparative genomics study on UGP3 homologs across different plant species suggested the structural and functional conservation of the proteins and, thus, a committing role for UGP3 in sulfolipid synthesis. << Less