Reaction participants Show >> << Hide
- Name help_outline nocardicin E Identifier CHEBI:77885 Charge -2 Formula C19H15N3O7 InChIKeyhelp_outline NMMOYDKOFASOBV-HKHZIIAMSA-L SMILEShelp_outline Oc1ccc(cc1)[C@@H](N1C[C@H](NC(=O)C(=N/[O-])\c2ccc(O)cc2)C1=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline isonocardicin A Identifier CHEBI:77633 Charge -2 Formula C23H22N4O9 InChIKeyhelp_outline CTNZOGJNVIFEBA-MOKAZRKYSA-L SMILEShelp_outline N1(C([C@H](C1)NC(/C(/C=2C=CC(OCC[C@@H](C(=O)[O-])[NH3+])=CC2)=N\[O-])=O)=O)[C@@H](C([O-])=O)C3=CC=C(C=C3)O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-methyl-5'-thioadenosine Identifier CHEBI:17509 (Beilstein: 42420; CAS: 2457-80-9) help_outline Charge 0 Formula C11H15N5O3S InChIKeyhelp_outline WUUGFSXJNOTRMR-IOSLPCCCSA-N SMILEShelp_outline CSC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 34 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19845 | RHEA:19846 | RHEA:19847 | RHEA:19848 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Mutational analysis of nocK and nocL in the nocardicin a producer Nocardia uniformis.
Kelly W.L., Townsend C.A.
The nocardicins are a family of monocyclic beta-lactam antibiotics produced by the actinomycete Nocardia uniformis subsp. tsuyamanensis ATCC 21806. The most potent of this series is nocardicin A, containing a syn-configured oxime moiety, an uncommon feature in natural products. The nocardicin A bi ... >> More
The nocardicins are a family of monocyclic beta-lactam antibiotics produced by the actinomycete Nocardia uniformis subsp. tsuyamanensis ATCC 21806. The most potent of this series is nocardicin A, containing a syn-configured oxime moiety, an uncommon feature in natural products. The nocardicin A biosynthetic gene cluster was recently identified and found to encode proteins in keeping with nocardicin A production, including the nocardicin N-oxygenase, NocL, in addition to genes of undetermined function, such as nocK, which bears similarities to a broad family of esterases. The latter was hypothesized to be involved in the formation of the critical beta-lactam ring. While previously shown to effect oxidation of the 2'-amine of nocardicin C to provide nocardicin A, it was uncertain whether NocL was the only N-oxidizing enzyme required for nocardicin A biosynthesis. To further detail the role of NocL in nocardicin production in N. uniformis, and to examine the function of nocK, a method for the transformation of N. uniformis protoplasts to inactivate both nocK and nocL was developed and applied. A reliable protocol is reported to achieve both insertional disruption and in trans complementation in this strain. While the nocK mutant still produced nocardicin A at levels near that seen for wild-type N. uniformis, and therefore has no obvious role in nocardicin biosynthesis, the nocL disruptant failed to generate the oxime-containing metabolite. Nocardicin A production was restored in the nocL mutant upon in trans expression of the gene. Furthermore, the nocL mutant accumulated the biosynthetic intermediate nocardicin C, confirming its role as the sole oxime-forming enzyme required for production of nocardicin A. << Less
J. Bacteriol. 187:739-746(2005) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Purification, characterization, and cloning of an S-adenosylmethionine-dependent 3-amino-3-carboxypropyltransferase in nocardicin biosynthesis.
Reeve A.M., Breazeale S.D., Townsend C.A.
S-Adenosylmethionine:nocardicin 3-amino-3-carboxypropyltransferase catalyzes the biosynthetically rare transfer of the 3-amino-3-carboxypropyl moiety from S-adenosylmethionine to a phenolic site in the beta-lactam substrates nocardicin E, F, and G, a late step of the biosynthesis of the monocyclic ... >> More
S-Adenosylmethionine:nocardicin 3-amino-3-carboxypropyltransferase catalyzes the biosynthetically rare transfer of the 3-amino-3-carboxypropyl moiety from S-adenosylmethionine to a phenolic site in the beta-lactam substrates nocardicin E, F, and G, a late step of the biosynthesis of the monocyclic beta-lactam antibiotic nocardicin A. Whereas a number of conventional methods were ineffective in purifying the transferase, it was successfully obtained by two complementary affinity chromatography steps that took advantage of the two substrate-two product reaction scheme. S-Adenosylhomocysteine-agarose selected enzymes that utilize S-adenosylmethionine, and a second column, nocardicin A-agarose, specifically bound the desired transferase to yield the enzyme as a single band of 38 kDa on a silver-stained SDS-polyacrylamide gel. The transferase is active as a monomer and exhibits sequential kinetics. Further kinetic characterization of this protein is described and its role in the biosynthesis of nocardicin A discussed. The gene encoding this transferase was cloned from a sublibrary of Nocardia uniformis DNA. Translation gave a protein of deduced mass 32,386 Da which showed weak homology to small molecule methyltransferases. However, three correctly disposed signature motifs characteristic of these enzymes were observed. << Less
J. Biol. Chem. 273:30695-30703(1998) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.