Reaction participants Show >> << Hide
- Name help_outline (6R)-10-formyltetrahydrofolate Identifier CHEBI:195366 Charge -2 Formula C20H21N7O7 InChIKeyhelp_outline AUFGTPPARQZWDO-YPMHNXCESA-L SMILEShelp_outline [H]C(=O)N(C[C@H]1CNC2=C(N1)C(=O)NC(N)=N2)C1=CC=C(C=C1)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (6S)-5,6,7,8-tetrahydrofolate Identifier CHEBI:57453 (Beilstein: 10223255) help_outline Charge -2 Formula C19H21N7O6 InChIKeyhelp_outline MSTNYGQPCMXVAQ-RYUDHWBXSA-L SMILEShelp_outline Nc1nc2NC[C@H](CNc3ccc(cc3)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)Nc2c(=O)[nH]1 2D coordinates Mol file for the small molecule Search links Involved in 41 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formate Identifier CHEBI:15740 (CAS: 71-47-6) help_outline Charge -1 Formula CHO2 InChIKeyhelp_outline BDAGIHXWWSANSR-UHFFFAOYSA-M SMILEShelp_outline [H]C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 98 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19833 | RHEA:19834 | RHEA:19835 | RHEA:19836 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Arabidopsis 10-formyl tetrahydrofolate deformylases are essential for photorespiration.
Collakova E., Goyer A., Naponelli V., Krassovskaya I., Gregory J.F. III, Hanson A.D., Shachar-Hill Y.
In prokaryotes, PurU (10-formyl tetrahydrofolate [THF] deformylase) metabolizes 10-formyl THF to formate and THF for purine and Gly biosyntheses. The Arabidopsis thaliana genome contains two putative purU genes, At4g17360 and At5g47435. Knocking out these genes simultaneously results in plants tha ... >> More
In prokaryotes, PurU (10-formyl tetrahydrofolate [THF] deformylase) metabolizes 10-formyl THF to formate and THF for purine and Gly biosyntheses. The Arabidopsis thaliana genome contains two putative purU genes, At4g17360 and At5g47435. Knocking out these genes simultaneously results in plants that are smaller and paler than the wild type. These double knockout (dKO) mutant plants show a 70-fold increase in Gly levels and accumulate elevated levels of 5- and 10-formyl THF. Embryo development in dKO mutants arrests between heart and early bent cotyledon stages. Mature seeds are shriveled, accumulate low amounts of lipids, and fail to germinate. However, the dKO mutant is only conditionally lethal and is rescued by growth under nonphotorespiratory conditions. In addition, culturing dKO siliques in the presence of sucrose restores normal embryo development and seed viability, suggesting that the seed and embryo development phenotypes are a result of a maternal effect. Our findings are consistent with the involvement of At4g17360 and At5g47435 proteins in photorespiration, which is to prevent excessive accumulation of 5-formyl THF, a potent inhibitor of the Gly decarboxylase/Ser hydroxymethyltransferase complex. Supporting this role, deletion of the At2g38660 gene that encodes the bifunctional 5,10-methylene THF dehydrogenase/5,10-methenyl THF cyclohydrolase that acts upstream of 5-formyl THF formation restored the wild-type phenotype in dKO plants. << Less
-
Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in Escherichia coli.
Nagy P.L., Marolewski A., Benkovic S.J., Zalkin H.
The enzyme encoded by Escherichia coli purU has been overproduced, purified, and characterized. The enzyme catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to FH4 and formate. Formyl-FH4 hydrolase thus generates the formate that is used by purT-encoded 5'-phosphoribosylglycinamid ... >> More
The enzyme encoded by Escherichia coli purU has been overproduced, purified, and characterized. The enzyme catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to FH4 and formate. Formyl-FH4 hydrolase thus generates the formate that is used by purT-encoded 5'-phosphoribosylglycinamide transformylase for step three of de novo purine nucleotide synthesis. Formyl-FH4 hydrolase, a hexamer with 32-kDa subunits, is activated by methionine and inhibited by glycine. Heterotropic cooperativity is observed for activation by methionine in the presence of glycine and for inhibition by glycine in the presence of methionine. These results, along with previous mutant analyses, lead to the conclusion formyl-FH4 hydrolase is a regulatory enzyme whose main function is to balance the pools of FH4 and C1-FH4 in response to changing growth conditions. The enzyme uses methionine and glycine to sense the pools of C1-FH4 and FH4, respectively. << Less