Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 5-formyl-3-hydroxy-2-methylpyridine-4-carboxylate Identifier CHEBI:140633 Charge -1 Formula C8H6NO4 InChIKeyhelp_outline JTWNWNJMNSJYDL-UHFFFAOYSA-M SMILEShelp_outline C1(=CN=C(C(=C1C(=O)[O-])O)C)C=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5-hydroxy-6-methylpyridine-3,4-dicarboxylate Identifier CHEBI:77620 Charge -2 Formula C8H5NO5 InChIKeyhelp_outline LVJJEIJOKPHQOU-UHFFFAOYSA-L SMILEShelp_outline Cc1[nH+]cc(C([O-])=O)c(C([O-])=O)c1[O-] 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19693 | RHEA:19694 | RHEA:19695 | RHEA:19696 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Gene identification and characterization of 5-formyl-3-hydroxy-2-methylpyridine 4-carboxylic acid 5-dehydrogenase, an NAD+-dependent dismutase.
Yokochi N., Yoshikane Y., Matsumoto S., Fujisawa M., Ohnishi K., Yagi T.
A chromosomal gene, mlr6793, in Mesorhizobium loti was identified as the gene encoding 5-formyl-3-hydroxy-2-methylpyridine 4-carboxylic acid (FHMPC) dehydrogenase (dismutase) involved in the degradation pathway for pyridoxine (vitamin B(6)). The homogenously purified recombinant enzyme has a molec ... >> More
A chromosomal gene, mlr6793, in Mesorhizobium loti was identified as the gene encoding 5-formyl-3-hydroxy-2-methylpyridine 4-carboxylic acid (FHMPC) dehydrogenase (dismutase) involved in the degradation pathway for pyridoxine (vitamin B(6)). The homogenously purified recombinant enzyme has a molecular mass of 59.1 kDa and is a homodimeric protein. FHMPC dehydrogenase catalyses practically irreversible oxidation (k(cat) = 204 s(-1)) of FHMPC (K(m) = 48.2 microM) by NAD(+) (K(m) = 34.3 microM) to 3-hydroxy-2-methyl-pyridine 4, 5-dicarboxylic acid (HMPDC), and practically irreversible reduction (k(cat) = 217 s(-1)) of FHMPC (K(m) = 24.9 microM) by NADH (K(m) = 12.4 microM) to 4-pyridoxic acid. When the enzyme reaction was started with the combination of FHMPC and NAD(+) or that of FHMPC and NADH, HMPDC and 4-pyridoxic acid were produced in an almost equimolar ratio throughout the reaction. FHMPC dehydrogenase belongs to the 3-hydroxyacyl-CoA dehydrogenase family with 31% identity with the human enzyme: it has probable catalytic diad residues, i.e. His137 and Glu149. The H137L mutant enzyme showed no measurable activity. The E149Q one was stable in contrast to the corresponding human 3-hydroxyacyl-CoA dehydrogenase mutant, and showed unique pH optima depending on the co-substrates used for the reaction. << Less
J. Biochem. 145:493-503(2009) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Crystal structure of 5-formyl-3-hydroxy-2-methylpyridine 4-carboxylic acid 5-dehydrogenase, an NAD-dependent dismutase from Mesorhizobium loti.
Mugo A.N., Kobayashi J., Mikami B., Yoshikane Y., Yagi T., Ohnishi K.
5-Formyl-3-hydroxy-2-methylpyridine 4-carboxylic acid 5-dehydrogenase (FHMPCDH) from Mesorhizobium loti is the fifth enzyme in degradation pathway I for pyridoxine. The enzyme catalyzes a dismutation reaction: the oxidation of 5-formyl-3-hydroxy-2-methylpyridine 4-carboxylic acid (FHMPC) to 3-hydr ... >> More
5-Formyl-3-hydroxy-2-methylpyridine 4-carboxylic acid 5-dehydrogenase (FHMPCDH) from Mesorhizobium loti is the fifth enzyme in degradation pathway I for pyridoxine. The enzyme catalyzes a dismutation reaction: the oxidation of 5-formyl-3-hydroxy-2-methylpyridine 4-carboxylic acid (FHMPC) to 3-hydroxy-2-methylpyridine 4,5-dicarboxylic acid with NAD(+) and reduction of FHMPC to 4-pyridoxic acid with NADH. FHMPCDH belongs to the l-3-hydroxyacyl-CoA dehydrogenase (HAD) family. The crystal structure was determined by molecular replacement and refined to a resolution of 1.55Å (R-factor of 16.4%, Rfree=19.4%). There were two monomers in the asymmetric unit. The overall structure of the monomer consisted of N- and C-terminal domains connected by a short linker loop. The monomer was similar to members of the HAD family (RMSD=1.9Å). The active site was located between the domains and highly conserved to that of human heart l-3-hydroxyacyl-CoA dehydrogenase (HhHAD). His-Glu catalytic dyad, a serine and two asparagine residues of HhHAD were conserved. Ser116, His137 and Glu149 in FHMPCDH are connected by a hydrogen bonding network forming a catalytic triad. The functions of the active site residues in the reaction mechanism are discussed. << Less
Biochem. Biophys. Res. Commun. 456:35-40(2015) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Enzymes of vitamin B6 degradation. Purification and properties of isopyridoxal dehydrogenase and 5-formyl-3-hydroxy-2-methylpyridine-4-carboxylic-acid dehydrogenase.
Lee Y.C., Nelson M.J., Snell E.E.
Two NAD+-dependent, highly specific pyridine-5-aldehyde dehydrogenases, 5-formyl-3-hydroxy-2-methylpyridine-4-carboxylic-acid (Compound 1) dehydrogenase and isopyridoxal dehydrogenase, were purified to homogeneity from Pseudomonas MA-1 and Arthrobacter Cr-7, respectively. Both enzymes are induced ... >> More
Two NAD+-dependent, highly specific pyridine-5-aldehyde dehydrogenases, 5-formyl-3-hydroxy-2-methylpyridine-4-carboxylic-acid (Compound 1) dehydrogenase and isopyridoxal dehydrogenase, were purified to homogeneity from Pseudomonas MA-1 and Arthrobacter Cr-7, respectively. Both enzymes are induced in response to growth of the organisms on pyridoxine and catalyze steps in the degradation of this compound by these organisms. Compound 1 dehydrogenase (Mr = 65,000) contains two subunits of equal size with methionine as the NH2-terminal amino acid and acts optimally at pH 7.8-8.5. It catalyzes with equal facility (turnover number = 400-670 s-1 molecule-1) both the oxidation of Compound 1 (Km = 65 microM) by NAD+ (Km = 25 microM) to 3-hydroxy-2-methylpyridine-4,5-dicarboxylic acid and the reduction of Compound 1 by NADH (Km = 20 microM) to 4-pyridoxic acid and appears to act as a true dismutase. The possible advantage to the organism of its ability to act as a dismutase is discussed briefly. No oxidation of 4-pyridoxic acid by this enzyme was observed. Isopyridoxal dehydrogenase (Mr = 242,000) contains four subunits of equal size, again with methionine at the NH2 terminus. At its optimal pH of 8.0-8.6, it catalyzes the oxidation of isopyridoxal (Km = 40 microM, turnover number = 10 s-1 molecule-1) by NAD+ (Km = 40 microM) to a mixture of 5-pyridoxic acid and 5-pyridoxolactone, which are produced in constant ratio throughout the course of the reaction. Formation of the two products, although unusual, is readily understandable in terms of the structure of isopyridoxal in solution or the structure of a possible acyl-enzyme intermediate in the oxidative reaction. << Less
J Biol Chem 261:15106-15111(1986) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.