Enzymes
UniProtKB help_outline | 8,558 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline D-mannitol 1-phosphate Identifier CHEBI:61381 Charge -2 Formula C6H13O9P InChIKeyhelp_outline GACTWZZMVMUKNG-KVTDHHQDSA-L SMILEShelp_outline OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline β-D-fructose 6-phosphate Identifier CHEBI:57634 (Beilstein: 6422468) help_outline Charge -2 Formula C6H11O9P InChIKeyhelp_outline BGWGXPAPYGQALX-ARQDHWQXSA-L SMILEShelp_outline OC[C@@]1(O)O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19661 | RHEA:19662 | RHEA:19663 | RHEA:19664 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Polyol-specific long-chain dehydrogenases/reductases of mannitol metabolism in Aspergillus fumigatus: biochemical characterization and pH studies of mannitol 2-dehydrogenase and mannitol-1-phosphate 5-dehydrogenase.
Krahulec S., Armao G.C., Bubner P., Klimacek M., Nidetzky B.
Functional genomics data suggests that the metabolism of mannitol in the human pathogen Aspergillus fumigatus involves the action of two polyol-specific long-chain dehydrogenases/reductases, mannitol-1-phosphate 5-dehydrogenase (M1PDH) and mannitol 2-dehydrogenase (M2DH). The gene encoding the put ... >> More
Functional genomics data suggests that the metabolism of mannitol in the human pathogen Aspergillus fumigatus involves the action of two polyol-specific long-chain dehydrogenases/reductases, mannitol-1-phosphate 5-dehydrogenase (M1PDH) and mannitol 2-dehydrogenase (M2DH). The gene encoding the putative M2DH was expressed in Escherichia coli, and the purified recombinant protein was characterized biochemically. The predicted enzymatic function of a NAD(+)-dependent M2DH was confirmed. The enzyme is a monomer of 58kDa in solution and does not require metals for activity. pH profiles for M2DH and the previously isolated M1PDH were recorded in the pH range 6.0-10.0 for the oxidative and reductive direction of the reactions under conditions where substrate was limiting (k(cat)/K) or saturating (k(cat)). The pH-dependence of logk(cat) was usually different from that of log(k(cat)/K), suggesting that more than one step of the enzymatic mechanism was affected by changes in pH. The greater complexity of the pH profiles of log(k(cat)/K) for the fungal enzymes as compared to the analogous pH profiles for M2DH from Pseudomonas fluorescens may reflect sequence changes in vicinity of the conserved catalytic lysine. << Less
Chem. Biol. Interact. 178:274-282(2009) [PubMed] [EuropePMC]
-
Molecular and biochemical characterization of mannitol-1-phosphate dehydrogenase from the model brown alga Ectocarpus sp.
Bonin P., Groisillier A., Raimbault A., Guibert A., Boyen C., Tonon T.
The sugar alcohol mannitol is important in the food, pharmaceutical, medical and chemical industries. It is one of the most commonly occurring polyols in nature, with the exception of Archaea and animals. It has a range of physiological roles, including as carbon storage, compatible solute, and os ... >> More
The sugar alcohol mannitol is important in the food, pharmaceutical, medical and chemical industries. It is one of the most commonly occurring polyols in nature, with the exception of Archaea and animals. It has a range of physiological roles, including as carbon storage, compatible solute, and osmolyte. Mannitol is present in large amounts in brown algae, where its synthesis involved two steps: a mannitol-1-phosphate dehydrogenase (M1PDH) catalyzes a reversible reaction between fructose-6-phosphate (F6P) and mannitol-1-phosphate (M1P) (EC 1.1.1.17), and a mannitol-1-phosphatase hydrolyzes M1P to mannitol (EC 3.1.3.22). Analysis of the model brown alga Ectocarpus sp. genome provided three candidate genes for M1PDH activities. We report here the sequence analysis of Ectocarpus M1PDHs (EsM1PDHs), and the biochemical characterization of the recombinant catalytic domain of EsM1PDH1 (EsM1PDH1cat). Ectocarpus M1PDHs are representatives of a new type of modular M1PDHs among the polyol-specific long-chain dehydrogenases/reductases (PSLDRs). The N-terminal domain of EsM1PDH1 was not necessary for enzymatic activity. Determination of kinetic parameters indicated that EsM1PDH1cat displayed higher catalytic efficiency for F6P reduction compared to M1P oxidation. Both activities were influenced by NaCl concentration and inhibited by the thioreactive compound pHMB. These observations were completed by measurement of endogenous M1PDH activity and of EsM1PDH gene expression during one diurnal cycle. No significant changes in enzyme activity were monitored between day and night, although transcription of two out of three genes was altered, suggesting different levels of regulation for this key metabolic pathway in brown algal physiology. << Less
-
Model-enabled gene search (MEGS) allows fast and direct discovery of enzymatic and transport gene functions in the marine bacterium Vibrio fischeri.
Pan S., Nikolakakis K., Adamczyk P.A., Pan M., Ruby E.G., Reed J.L.
Whereas genomes can be rapidly sequenced, the functions of many genes are incompletely or erroneously annotated because of a lack of experimental evidence or prior functional knowledge in sequence databases. To address this weakness, we describe here a <u>m</u>odel-<u>e</u>nabled <u>g</u>ene <u>s< ... >> More
Whereas genomes can be rapidly sequenced, the functions of many genes are incompletely or erroneously annotated because of a lack of experimental evidence or prior functional knowledge in sequence databases. To address this weakness, we describe here a <u>m</u>odel-<u>e</u>nabled <u>g</u>ene <u>s</u>earch (MEGS) approach that (i) identifies metabolic functions either missing from an organism's genome annotation or incorrectly assigned to an ORF by using discrepancies between metabolic model predictions and experimental culturing data; (ii) designs functional selection experiments for these specific metabolic functions; and (iii) selects a candidate gene(s) responsible for these functions from a genomic library and directly interrogates this gene's function experimentally. To discover gene functions, MEGS uses genomic functional selections instead of relying on correlations across large experimental datasets or sequence similarity as do other approaches. When applied to the bioluminescent marine bacterium <i>Vibrio fischeri</i>, MEGS successfully identified five genes that are responsible for four metabolic and transport reactions whose absence from a draft metabolic model of <i>V. fischeri</i> caused inaccurate modeling of high-throughput experimental data. This work demonstrates that MEGS provides a rapid and efficient integrated computational and experimental approach for annotating metabolic genes, including those that have previously been uncharacterized or misannotated. << Less
-
Mannitol metabolism, a transferable property of pneumococcus.
MARMUR J., HOTCHKISS R.D.
-
Characterization of recombinant Aspergillus fumigatus mannitol-1-phosphate 5-dehydrogenase and its application for the stereoselective synthesis of protio and deuterio forms of D-mannitol 1-phosphate.
Krahulec S., Armao G.C., Weber H., Klimacek M., Nidetzky B.
A putative long-chain mannitol-1-phosphate 5-dehydrogenase from Aspergillus fumigatus (AfM1PDH) was overexpressed in Escherichia coli to a level of about 50% of total intracellular protein. The purified recombinant protein was a approximately 40-kDa monomer in solution and displayed the predicted ... >> More
A putative long-chain mannitol-1-phosphate 5-dehydrogenase from Aspergillus fumigatus (AfM1PDH) was overexpressed in Escherichia coli to a level of about 50% of total intracellular protein. The purified recombinant protein was a approximately 40-kDa monomer in solution and displayed the predicted enzymatic function, catalyzing NAD(H)-dependent interconversion of d-mannitol 1-phosphate and d-fructose 6-phosphate with a specific reductase activity of 170 U/mg at pH 7.1 and 25 degrees C. NADP(H) showed a marginal activity. Hydrogen transfer from formate to d-fructose 6-phosphate, mediated by NAD(H) and catalyzed by a coupled enzyme system of purified Candida boidinii formate dehydrogenase and AfM1PDH, was used for the preparative synthesis of d-mannitol 1-phosphate or, by applying an analogous procedure using deuterio formate, the 5-[2H] derivative thereof. Following the precipitation of d-mannitol 1-phosphate as barium salt, pure product (>95% by HPLC and NMR) was obtained in isolated yields of about 90%, based on 200 mM of d-fructose 6-phosphate employed in the reaction. In situ proton NMR studies of enzymatic oxidation of d-5-[2H]-mannitol 1-phosphate demonstrated that AfM1PDH was stereospecific for transferring the deuterium to NAD+, producing (4S)-[2H]-NADH. Comparison of maximum initial rates for NAD+-dependent oxidation of protio and deuterio forms of D-mannitol 1-phosphate at pH 7.1 and 25 degrees C revealed a primary kinetic isotope effect of 2.9+/-0.2, suggesting that the hydride transfer was strongly rate-determining for the overall enzymatic reaction under these conditions. << Less
-
A thermostable mannitol-1-phosphate dehydrogenase is required in mannitol metabolism of the thermophilic acetogenic bacterium Thermoanaerobacter kivui.
Moon J., Henke L., Merz N., Basen M.
Acetogenic bacteria recently attracted attention because they reduce carbon dioxide (CO<sub>2</sub> ) with hydrogen (H<sub>2</sub> ) to acetate or to other products such as ethanol. Besides gases, acetogens use a broad range of substrates, but conversion of the sugar alcohol mannitol has rarely be ... >> More
Acetogenic bacteria recently attracted attention because they reduce carbon dioxide (CO<sub>2</sub> ) with hydrogen (H<sub>2</sub> ) to acetate or to other products such as ethanol. Besides gases, acetogens use a broad range of substrates, but conversion of the sugar alcohol mannitol has rarely been reported. We found that the thermophilic acetogenic bacterium Thermoanaerobacter kivui grew on mannitol with a specific growth rate of 0.33 h<sup>-1</sup> to a final optical density (OD<sub>600</sub> ) of 2.2. Acetate was the major product formed. A lag phase was observed only in cultures pre-grown on glucose, not in those pre-grown on mannitol, indicating that mannitol metabolism is regulated. Mannitol-1-phosphate dehydrogenase (MtlD) activity was observed in cell-free extracts of cells grown on mannitol only. A gene cluster (TKV_c02830-TKV_c02860) for mannitol uptake and conversion was identified in the T. kivui genome, and its involvement was confirmed by deleting the mtlD gene (TKV_c02860) encoding the key enzyme MtlD. Finally, we overexpressed mtlD, and the recombinant MtlD carried out the reduction of fructose-6-phosphate with NADH, at a high V<sub>MAX</sub> of 1235 U mg<sup>-1</sup> at 65°C. The enzyme was thermostable for 40 min at 75°C, thereby representing the first characterized MtlD from a thermophile. << Less
-
D-Mannitol 1-phosphate dehydrogenase from Escherichia coli.
WOLFF J.B., KAPLAN N.O.