Reaction participants Show >> << Hide
-
Namehelp_outline
adenosine1518/adenosine1519 in 16S rRNA
Identifier
RHEA-COMP:10232
Reactive part
help_outline
- Name help_outline AMP residue Identifier CHEBI:74411 Charge -1 Formula C10H11N5O6P Positionhelp_outline 1518 SMILEShelp_outline NC1=NC=NC2=C1N=CN2[C@@H]3O[C@H](COP(=O)(*)[O-])[C@@H](O*)[C@H]3O 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP residue Identifier CHEBI:74411 Charge -1 Formula C10H11N5O6P Positionhelp_outline 1519 SMILEShelp_outline NC1=NC=NC2=C1N=CN2[C@@H]3O[C@H](COP(=O)(*)[O-])[C@@H](O*)[C@H]3O 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N6-dimethyladenosine1518/N6-dimethyladenosine1519 in 16S rRNA
Identifier
RHEA-COMP:10233
Reactive part
help_outline
- Name help_outline N6-dimethyladenosine 5'-phosphate residue Identifier CHEBI:74493 Charge -1 Formula C12H15N5O6P Positionhelp_outline 1518 SMILEShelp_outline C1(N(C)C)=NC=NC2=C1N=CN2[C@@H]3O[C@H](COP(=O)(*)[O-])[C@@H](O*)[C@H]3O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N6-dimethyladenosine 5'-phosphate residue Identifier CHEBI:74493 Charge -1 Formula C12H15N5O6P Positionhelp_outline 1519 SMILEShelp_outline C1(N(C)C)=NC=NC2=C1N=CN2[C@@H]3O[C@H](COP(=O)(*)[O-])[C@@H](O*)[C@H]3O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19609 | RHEA:19610 | RHEA:19611 | RHEA:19612 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Methylation of the conserved A1518-A1519 in Escherichia coli 16S ribosomal RNA by the ksgA methyltransferase is influenced by methylations around the similarly conserved U1512.G1523 base pair in the 3' terminal hairpin.
Formenoy L.J., Cunningham P.R., Nurse K., Pleij C.W., Ofengand J.
An in vitro system developed for the site-specific mutagenesis of 16S rRNA of Escherichia coli ribosomes was used to make five mutations around the highly conserved U1512.G1523 base pair in the 3' terminal hairpin. Each of the mutant RNAs was reconstituted with a complete mixture of 30S proteins t ... >> More
An in vitro system developed for the site-specific mutagenesis of 16S rRNA of Escherichia coli ribosomes was used to make five mutations around the highly conserved U1512.G1523 base pair in the 3' terminal hairpin. Each of the mutant RNAs was reconstituted with a complete mixture of 30S proteins to yield 30S ribosomal particles, which were tested for the ability of the ksgA methylase to form m6(2)A1518 and m6(2)A1519. Dimethylation of A1518 and A1519 in the hairpin loop was inhibited 20-80% by the mutations. The results indicate that G1523 and C1524 in the stem are important determinants for the dimethylation of A1518 and A1519 in the loop. Either the enzyme recognition region extends that far or the effect of mutations in the stem are propagated in some manner to the loop. The conserved U.G base pair does not of itself appear to play a major role in ksgA methylase recognition. << Less
-
Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli.
O'Farrell H.C., Scarsdale J.N., Rife J.P.
The bacterial enzyme KsgA catalyzes the transfer of a total of four methyl groups from S-adenosyl-l-methionine (S-AdoMet) to two adjacent adenosine bases in 16S rRNA. This enzyme and the resulting modified adenosine bases appear to be conserved in all species of eubacteria, eukaryotes, and archaeb ... >> More
The bacterial enzyme KsgA catalyzes the transfer of a total of four methyl groups from S-adenosyl-l-methionine (S-AdoMet) to two adjacent adenosine bases in 16S rRNA. This enzyme and the resulting modified adenosine bases appear to be conserved in all species of eubacteria, eukaryotes, and archaebacteria, and in eukaryotic organelles. Bacterial resistance to the aminoglycoside antibiotic kasugamycin involves inactivation of KsgA and resulting loss of the dimethylations, with modest consequences to the overall fitness of the organism. In contrast, the yeast ortholog, Dim1, is essential. In yeast, and presumably in other eukaryotes, the enzyme performs a vital role in pre-rRNA processing in addition to its methylating activity. Another ortholog has been discovered recently, h-mtTFB in human mitochondria, which has a second function; this enzyme is a nuclear-encoded mitochondrial transcription factor. The KsgA enzymes are homologous to another family of RNA methyltransferases, the Erm enzymes, which methylate a single adenosine base in 23S rRNA and confer resistance to the MLS-B group of antibiotics. Despite their sequence similarity, the two enzyme families have strikingly different levels of regulation that remain to be elucidated. We have crystallized KsgA from Escherichia coli and solved its structure to a resolution of 2.1A. The structure bears a strong similarity to the crystal structure of ErmC' from Bacillus stearothermophilus and a lesser similarity to sc-mtTFB, the Saccharomyces cerevisiae version of h-mtTFB. Comparison of the three crystal structures and further study of the KsgA protein will provide insight into this interesting group of enzymes. << Less