Enzymes
UniProtKB help_outline | 2,068 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
L-histidyl-[protein]
Identifier
RHEA-COMP:9745
Reactive part
help_outline
- Name help_outline L-histidine residue Identifier CHEBI:29979 Charge 0 Formula C6H7N3O SMILEShelp_outline C(*)(=O)[C@@H](N*)CC=1N=CNC1 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 904 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Nτ-methyl-L-histidyl-[protein]
Identifier
RHEA-COMP:11600
Reactive part
help_outline
- Name help_outline Nτ-methyl-L-histidine residue Identifier CHEBI:16367 Charge 0 Formula C7H9N3O SMILEShelp_outline [C@@H](N*)(C(*)=O)CC=1N=CN(C1)C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 827 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19369 | RHEA:19370 | RHEA:19371 | RHEA:19372 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Partial purification and characterisation of S-adenosylmethionine:protein-histidine N-methyltransferase from rabbit skeletal muscle.
Vijayasarathy C., Rao B.S.
A new class of protein methylase (S-adenosylmethionine:protein-histidine N-methyltransferase) which methylates histidine residues of protein substrates using S-adenosylmethionine as the methyl donor has been partially purified from rabbit skeletal muscle, 22-fold with a yield of 56%. The enzyme ac ... >> More
A new class of protein methylase (S-adenosylmethionine:protein-histidine N-methyltransferase) which methylates histidine residues of protein substrates using S-adenosylmethionine as the methyl donor has been partially purified from rabbit skeletal muscle, 22-fold with a yield of 56%. The enzyme activity was monitored using denatured myofibrils from young rabbit skeletal muscle as the methyl acceptor protein substrate. The enzyme was localised in the myofibrillar fraction and myofibrils isolated in pure form represented the enzyme-substrate complex. The enzyme was solubilised in 0.275 M KCl. The methylase showed no requirement for any metal ion and has a pH optimum of 8.0. It was shown to require a reducing agent like mercaptoethanol for its activity. It was also shown that cardiac and skeletal muscle forms of actins obtained from different species serve as the efficient methyl acceptor protein substrates. Since the enzyme was found to methylate specifically the histidine residues of actin we propose to designate this new methylase as protein methylase IV, to distinguish it from the already known protein methylases I, II and III. << Less