Enzymes
UniProtKB help_outline | 8,052 proteins |
Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
S-hexadecanoyl-L-cysteinyl-[protein]
Identifier
RHEA-COMP:11032
Reactive part
help_outline
- Name help_outline S-palmitoyl-L-cysteine residue Identifier CHEBI:74151 Charge 0 Formula C19H35NO2S SMILEShelp_outline *C([C@@H](N*)CSC(=O)CCCCCCCCCCCCCCC)=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hexadecanoate Identifier CHEBI:7896 (Beilstein: 3589907; CAS: 143-20-4) help_outline Charge -1 Formula C16H31O2 InChIKeyhelp_outline IPCSVZSSVZVIGE-UHFFFAOYSA-M SMILEShelp_outline CCCCCCCCCCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 92 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-cysteinyl-[protein]
Identifier
RHEA-COMP:10131
Reactive part
help_outline
- Name help_outline L-cysteine residue Identifier CHEBI:29950 Charge 0 Formula C3H5NOS SMILEShelp_outline C(=O)(*)[C@@H](N*)CS 2D coordinates Mol file for the small molecule Search links Involved in 127 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19233 | RHEA:19234 | RHEA:19235 | RHEA:19236 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
The crystal structure of palmitoyl protein thioesterase 1 and the molecular basis of infantile neuronal ceroid lipofuscinosis.
Bellizzi J.J. III, Widom J., Kemp C., Lu J.Y., Das A.K., Hofmann S.L., Clardy J.
Mutations in palmitoyl-protein thioesterase 1 (PPT1), a lysosomal enzyme that removes fatty acyl groups from cysteine residues in modified proteins, cause the fatal inherited neurodegenerative disorder infantile neuronal ceroid lipofuscinosis. The accumulation of undigested substrates leads to the ... >> More
Mutations in palmitoyl-protein thioesterase 1 (PPT1), a lysosomal enzyme that removes fatty acyl groups from cysteine residues in modified proteins, cause the fatal inherited neurodegenerative disorder infantile neuronal ceroid lipofuscinosis. The accumulation of undigested substrates leads to the formation of neuronal storage bodies that are associated with the clinical symptoms. Less severe forms of PPT1 deficiency have been found recently that are caused by a distinct set of PPT1 mutations, some of which retain a small amount of thioesterase activity. We have determined the crystal structure of PPT1 with and without bound palmitate by using multiwavelength anomalous diffraction phasing. The structure reveals an alpha/beta-hydrolase fold with a catalytic triad composed of Ser115-His289-Asp233 and provides insights into the structural basis for the phenotypes associated with PPT1 mutations. << Less
Proc. Natl. Acad. Sci. U.S.A. 97:4573-4578(2000) [PubMed] [EuropePMC]
-
cDNA and genomic cloning of human palmitoyl-protein thioesterase (PPT), the enzyme defective in infantile neuronal ceroid lipofuscinosis.
Schriner J.E., Yi W., Hofmann S.L.
Palmitoyl-protein thioesterase (PPT) is a small glycoprotein that removes palmitate groups from cysteine residues in lipid-modified proteins. We recently reported mutations in PPT in patients with infantile neuronal ceroid lipofuscinosis (INCL), a severe neurodegenerative disorder (J. Vesa et al., ... >> More
Palmitoyl-protein thioesterase (PPT) is a small glycoprotein that removes palmitate groups from cysteine residues in lipid-modified proteins. We recently reported mutations in PPT in patients with infantile neuronal ceroid lipofuscinosis (INCL), a severe neurodegenerative disorder (J. Vesa et al., 1995, Nature 376: 584-587). INCL is characterized by the accumulation of proteolipid storage material in brain and other tissues, suggesting that the disease is a consequence of abnormal catabolism of acylated proteins. In the current paper, we report the sequence of the human PPT cDNA and the structure of the human PPT gene. The cDNA predicts a protein of 306 amino acids that contains a 25-amino-acid signal peptide, three N-linked glycosylation sites, and consensus motifs characteristic of thioesterases. Northern analysis of a human tissue blot revealed ubiquitous expression of a single 2.5-kb mRNA, with highest expression in lung, brain, and heart. The human PPT gene spans 25 kb and is composed of seven coding exons and a large eighth exon, containing the entire 3'-untranslated region of 1388 bp. An Alu repeat and promoter elements corresponding to putative binding sites for several general transcription factors were identified in the 1060 nucleotides upstream of the transcription start site. The human PPT cDNA sequence and gene structure will provide the means for the identification of further causative mutations in INCL and facilitate genetic screening in selected high-risk populations. << Less
-
Assay and isolation of palmitoyl-protein thioesterase from bovine brain using palmitoylated H-Ras as substrate.
Camp L.A., Hofmann S.L.
-
pdf1, a palmitoyl protein thioesterase 1 ortholog in Schizosaccharomyces pombe: a yeast model of infantile Batten disease.
Cho S.K., Hofmann S.L.
Infantile Batten disease is a severe neurodegenerative storage disorder caused by mutations in the human PPT1 (palmitoyl protein thioesterase 1) gene, which encodes a lysosomal hydrolase that removes fatty acids from lipid-modified proteins. PPT1 has orthologs in many species, including lower orga ... >> More
Infantile Batten disease is a severe neurodegenerative storage disorder caused by mutations in the human PPT1 (palmitoyl protein thioesterase 1) gene, which encodes a lysosomal hydrolase that removes fatty acids from lipid-modified proteins. PPT1 has orthologs in many species, including lower organisms and plants, but not in Saccharomyces cerevisiae. The fission yeast Schizosaccharomyces pombe contains a previously uncharacterized open reading frame (SPBC530.12c) that encodes the S. pombe Ppt1p ortholog fused in frame to a second enzyme that is highly similar to a previously cloned mouse dolichol pyrophosphatase (Dolpp1p). In the present study, we characterized this interesting gene (designated here as pdf1, for palmitoyl protein thioesterase-dolichol pyrophosphate phosphatase fusion 1) through deletion of the open reading frame and complementation by plasmids bearing mutations in various regions of the pdf1 sequence. Strains bearing a deletion of the entire pdf1 open reading frame are nonviable and are rescued by a pdf1 expression plasmid. Inactivating mutations in the Dolpp1p domain do not rescue the lethality, whereas mutations in the Ppt1p domain result in cells that are viable but abnormally sensitive to sodium orthovanadate and elevated extracellular pH. The latter phenotypes have been previously associated with class C and class D vacuolar protein sorting (vps) mutants and vacuolar membrane H(+)-ATPase (vma) mutants in S. cerevisiae. Importantly, the Ppt1p-deficient phenotype is complemented by the human PPT1 gene. These results indicate that the function of PPT1 has been widely conserved throughout evolution and that S. pombe may serve as a genetically tractable model for the study of human infantile Batten disease. << Less
-
Lysosomal targeting of palmitoyl-protein thioesterase.
Verkruyse L.A., Hofmann S.L.
Palmitoyl-protein thioesterase is a newly described long chain fatty-acid hydrolase that removes fatty acyl groups from modified cysteines in proteins. We have recently identified palmitoyl-protein thioesterase as the defective enzyme in the recessive hereditary neurological degenerative disorder ... >> More
Palmitoyl-protein thioesterase is a newly described long chain fatty-acid hydrolase that removes fatty acyl groups from modified cysteines in proteins. We have recently identified palmitoyl-protein thioesterase as the defective enzyme in the recessive hereditary neurological degenerative disorder infantile neuronal ceroid lipofuscinosis (Vesa, J., Hellsten, E., Verkruyse, L. A., Camp, L. A. , Rapola, J., Santavuori, P., Hofmann, S. L., and Peltonen, L. (1995) Nature 376, 584-587). A defect in a lysosomal enzyme had been postulated for the disease, but until recently, the relevant defective lysosomal enzyme had not been identified. In this paper, we present evidence for the lysosomal localization of palmitoyl-protein thioesterase. We show that COS cells take up exogenously supplied palmitoyl-protein thioesterase intracellularly and that the cellular uptake is blocked by mannose 6-phosphate, a hallmark of lysosomal enzyme trafficking. The enzyme contains endoglycosidase H-sensitive oligosaccharides that contain phosphate groups. Furthermore, palmitoyl-protein thioesterase cosediments with lysosomal enzyme markers by Percoll density gradient centrifugation. Interestingly, the pH optimum for the enzyme is in the neutral range, a property shared by two other lysosomal enzymes that remove post-translational protein modifications. These findings suggest that palmitoyl-protein thioesterase is a lysosomal enzyme and that infantile neuronal ceroid lipofuscinosis is properly classified as a lysosomal storage disorder. << Less