Reaction participants Show >> << Hide
-
Namehelp_outline
glycyl-[formate C-acetyltransferase]
Identifier
RHEA-COMP:12190
Reactive part
help_outline
- Name help_outline glycine residue Identifier CHEBI:29947 Charge 0 Formula C2H3NO SMILEShelp_outline N(*)CC(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [flavodoxin]
Identifier
RHEA-COMP:10622
Reactive part
help_outline
- Name help_outline FMNH2 Identifier CHEBI:57618 (Beilstein: 6258176) help_outline Charge -2 Formula C17H21N4O9P InChIKeyhelp_outline YTNIXZGTHTVJBW-SCRDCRAPSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 794 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5'-deoxyadenosine Identifier CHEBI:17319 (CAS: 4754-39-6) help_outline Charge 0 Formula C10H13N5O3 InChIKeyhelp_outline XGYIMTFOTBMPFP-KQYNXXCUSA-N SMILEShelp_outline C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 69 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
glycin-2-yl radical-[formate C-acetyltransferase]
Identifier
RHEA-COMP:12191
Reactive part
help_outline
- Name help_outline glycin-2-yl radical residue Identifier CHEBI:32722 Charge 0 Formula C2H2NO SMILEShelp_outline C(*)(=O)[C](N*)[H] 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-methionine Identifier CHEBI:57844 Charge 0 Formula C5H11NO2S InChIKeyhelp_outline FFEARJCKVFRZRR-BYPYZUCNSA-N SMILEShelp_outline CSCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 121 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
semiquinone [flavodoxin]
Identifier
RHEA-COMP:14480
Reactive part
help_outline
- Name help_outline FMNH• Identifier CHEBI:140311 Charge -2 Formula C17H20N4O9P InChIKeyhelp_outline QRMADBXCFSIJKL-SCRDCRAPSA-L SMILEShelp_outline C=12NC(NC(C1[N]C=3C(N2C[C@@H]([C@@H]([C@@H](COP([O-])([O-])=O)O)O)O)=CC(=C(C3)C)C)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19225 | RHEA:19226 | RHEA:19227 | RHEA:19228 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The free radical in pyruvate formate-lyase is located on glycine-734.
Wagner A.F.V., Frey M., Neugebauer F.A., Schaefer W., Knappe J.
Pyruvate formate-lyase (acetyl-CoA:formate C-acetyltransferase, EC 2.3.1.54) from anaerobic Escherichia coli cells converts pyruvate to acetyl-CoA and formate by a unique homolytic mechanism that involves a free radical harbored in the protein structure. By EPR spectroscopy of selectively 13C-labe ... >> More
Pyruvate formate-lyase (acetyl-CoA:formate C-acetyltransferase, EC 2.3.1.54) from anaerobic Escherichia coli cells converts pyruvate to acetyl-CoA and formate by a unique homolytic mechanism that involves a free radical harbored in the protein structure. By EPR spectroscopy of selectively 13C-labeled enzyme, the radical (g = 2.0037) has been assigned to carbon-2 of a glycine residue. Estimated hyperfine coupling constants to the central 13C nucleus (A parallel = 4.9 mT and A perpendicular = 0.1 mT) and to 13C nuclei in alpha and beta positions agree with literature data for glycine radical models. N-coupling was verified through uniform 15N-labeling. The large 1H hyperfine splitting (1.5 mT) dominating the EPR spectrum was assigned to the alpha proton, which in the enzyme radical is readily solvent-exchangeable. Oxygen destruction of the radical produced two unique fragments (82 and 3 kDa) of the constituent polypeptide chain. The N-terminal block on the small fragment was identified by mass spectrometry as an oxalyl residue that derives from Gly-734, thus assigning the primary structural glycyl radical position. The carbon-centered radical is probably resonance-stabilized through the adjacent carboxamide groups in the polypeptide main chain and could be comparable energetically with other known protein radicals carrying the unpaired electron in tyrosine or tryptophan residues. << Less
Proc. Natl. Acad. Sci. U.S.A. 89:996-1000(1992) [PubMed] [EuropePMC]
-
Radical mechanisms of enzymatic catalysis.
Frey P.A.
Two classes of enzymatic mechanisms that proceed by free radical chemistry initiated by the 5'-deoxyadenosyl radical are discussed. In the first class, the mechanism of the interconversion of L-lysine and L-beta-lysine catalyzed by lysine 2,3-aminomutase (LAM) involves four radicals, three of whic ... >> More
Two classes of enzymatic mechanisms that proceed by free radical chemistry initiated by the 5'-deoxyadenosyl radical are discussed. In the first class, the mechanism of the interconversion of L-lysine and L-beta-lysine catalyzed by lysine 2,3-aminomutase (LAM) involves four radicals, three of which have been spectroscopically characterized. The reversible formation of the 5'-deoxyadenosyl radical takes place by the chemical cleavage of S-adenosylmethionine (SAM) reacting with the [4Fe-4S]+ center in LAM. In other reactions of SAM with iron-sulfur proteins, SAM is irreversibly consumed to generate the 5'-deoxyadenosyl radical, which activates an enzyme by abstracting a hydrogen atom from an enzymatic glycyl residue to form a glycyl radical. The glycyl radical enzymes include pyruvate formate-lyase, anaerobic ribonucleotide reductase from Escherichia coli, and benzylsuccinate synthase. Biotin synthase and lipoate synthase are SAM-dependent [4Fe-4S] proteins that catalyze the insertion of sulfur into unactivated C-H bonds, which are cleaved by the 5'-deoxyadenosyl radical from SAM. In the second class of enzymatic mechanisms using free radicals, adenosylcobalamin-dependent reactions, the 5'-deoxyadenosyl radical arises from homolytic cleavage of the cobalt-carbon bond, and it initiates radical reactions by abstracting hydrogen atoms from substrates. Three examples are described of suicide inactivation through the formation of exceptionally stable free radicals at enzymatic active sites. << Less
-
Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme.
Vey J.L., Yang J., Li M., Broderick W.E., Broderick J.B., Drennan C.L.
Pyruvate formate-lyase activating enzyme generates a stable and catalytically essential glycyl radical on G(734) of pyruvate formate-lyase via the direct, stereospecific abstraction of a hydrogen atom from pyruvate formate-lyase. The activase performs this remarkable feat by using an iron-sulfur c ... >> More
Pyruvate formate-lyase activating enzyme generates a stable and catalytically essential glycyl radical on G(734) of pyruvate formate-lyase via the direct, stereospecific abstraction of a hydrogen atom from pyruvate formate-lyase. The activase performs this remarkable feat by using an iron-sulfur cluster and S-adenosylmethionine (AdoMet), thus placing it among the AdoMet radical superfamily of enzymes. We report here structures of the substrate-free and substrate-bound forms of pyruvate formate-lyase-activating enzyme, the first structures of an AdoMet radical activase. To obtain the substrate-bound structure, we have used a peptide substrate, the 7-mer RVSGYAV, which contains the sequence surrounding G(734). Our structures provide fundamental insights into the interactions between the activase and the G(734) loop of pyruvate formate-lyase and provide a structural basis for direct and stereospecific H atom abstraction from the buried G(734) of pyruvate formate-lyase. << Less
Proc. Natl. Acad. Sci. U.S.A. 105:16137-16141(2008) [PubMed] [EuropePMC]
-
Adenosylmethionine-dependent synthesis of the glycyl radical in pyruvate formate-lyase by abstraction of the glycine C-2 pro-S hydrogen atom. Studies of [2H]glycine-substituted enzyme and peptides homologous to the glycine 734 site.
Frey M., Rothe M., Wagner A.F., Knappe J.
The active form of pyruvate formate-lyase (PFL) from Escherichia coli contains a glycyl radical in position 734 of the polypeptide chain which is produced post-translationally by pyruvate formate-lyase-activating enzyme (PFL activase) using S-adenosylmethionine (AdoMet) and dihydroflavodoxin as co ... >> More
The active form of pyruvate formate-lyase (PFL) from Escherichia coli contains a glycyl radical in position 734 of the polypeptide chain which is produced post-translationally by pyruvate formate-lyase-activating enzyme (PFL activase) using S-adenosylmethionine (AdoMet) and dihydroflavodoxin as co-substrates (Wagner, A.F. V., Frey, M., Neugebauer, F.A., Schäfer, W., and Knappe, J. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 996-1000). Studying radical synthesis with [2-2H]glycine-labeled PFL, we have now found stoichiometric incorporation of a 2H atom into the 5'-deoxyadenosine (dAdo) co-product via mass and NMR spectroscopic analyses. Furthermore, a series of peptides homologous to the Gly-734 site of PFL have been synthesized for analyzing recognition determinants of PFL activase. Peptides that proved active as substrates (monitored by [14C]dAdo formation from [14C]AdoMet) were also competitive inhibitors of PFL conversion to the radical form. In the sequence of the standard peptide Arg-Val-Ser-Gly-Tyr-Ala-Val, which corresponds to amino acid residues 731-737 of PFL, the Gly residue was replaceable by D-Ala (actually displaying enhanced efficiency), whereas a normal Ala totally abolished the interaction with PFL activase. Our results show that the radical in pyruvate formatelyase is produced by stereospecific abstraction of the pro-S hydrogen of glycine 734 by the 5'-dAdo radical generated in the active center of PFL activase. Gly-734 is probably located in a beta-turn segment of the protein. << Less