Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline formaldehyde Identifier CHEBI:16842 (CAS: 50-00-0) help_outline Charge 0 Formula CH2O InChIKeyhelp_outline WSFSSNUMVMOOMR-UHFFFAOYSA-N SMILEShelp_outline [H]C([H])=O 2D coordinates Mol file for the small molecule Search links Involved in 141 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline methanol Identifier CHEBI:17790 (CAS: 67-56-1) help_outline Charge 0 Formula CH4O InChIKeyhelp_outline OKKJLVBELUTLKV-UHFFFAOYSA-N SMILEShelp_outline CO 2D coordinates Mol file for the small molecule Search links Involved in 46 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formate Identifier CHEBI:15740 (CAS: 71-47-6) help_outline Charge -1 Formula CHO2 InChIKeyhelp_outline BDAGIHXWWSANSR-UHFFFAOYSA-M SMILEShelp_outline [H]C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 98 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19221 | RHEA:19222 | RHEA:19223 | RHEA:19224 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Identification and functional characterization of a gene for the methanol: N,N'-dimethyl-4-nitrosoaniline oxidoreductase from Mycobacterium sp. strain JC1 (DSM 3803).
Park H., Lee H., Ro Y.T., Kim Y.M.
Mycobacterium sp. strain JC1 is able to grow on methanol as a sole source of carbon and energy using methanol : N,N'-dimethyl-4-nitrosoaniline oxidoreductase (MDO) as a key enzyme for primary methanol oxidation. Purified MDO oxidizes ethanol and formaldehyde as well as methanol. The Mycobacterium ... >> More
Mycobacterium sp. strain JC1 is able to grow on methanol as a sole source of carbon and energy using methanol : N,N'-dimethyl-4-nitrosoaniline oxidoreductase (MDO) as a key enzyme for primary methanol oxidation. Purified MDO oxidizes ethanol and formaldehyde as well as methanol. The Mycobacterium sp. strain JC1 gene for MDO (mdo) was cloned, sequenced, and determined to have an open reading frame of 1272 bp. Northern blot and promoter analysis revealed that mdo transcription was induced in cells grown in the presence of methanol. Northern blotting together with RT-PCR also showed that the mdo gene was transcribed as monocistronic mRNA. Primer extension analysis revealed that the transcriptional start site of the mdo gene is located 21 bp upstream of the mdo start codon. An mdo-deficient mutant of Mycobacterium sp. strain JC1 did not grow with methanol as a sole source of carbon and energy. << Less
Microbiology 156:463-471(2010) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Formaldehyde dismutase, a novel NAD-binding oxidoreductase from Pseudomonas putida F61.
Kato N., Yamagami T., Shimao M., Sakazawa C.
A novel enzyme, formaldehyde dismutase, was purified and crystallized from the cell extract of an isolated bacterium, Pseudomonas putida F61. The enzyme catalyzes the dismutation of aldehydes and alcohol:aldehyde oxidoreduction in the absence of an exogenous electron acceptor. The enzyme is compos ... >> More
A novel enzyme, formaldehyde dismutase, was purified and crystallized from the cell extract of an isolated bacterium, Pseudomonas putida F61. The enzyme catalyzes the dismutation of aldehydes and alcohol:aldehyde oxidoreduction in the absence of an exogenous electron acceptor. The enzyme is composed of four identical subunits with a Mr of 44 000. Each subunit contains 1 mol NAD(H) and 2 mol zinc/mol. The ratio of NAD+ and NADH in a crystalline preparation of the enzyme was about 7:3. The enzyme-bound coenzyme was completely reduced and oxidized on the addition of a large amount of an alcohol and an aldehyde respectively. Both the oxidized and reduced enzymes catalyzed the dismutation reaction to the same extent. Steady-state kinetics of the enzyme were investigated using an oxidoreduction reaction between an alcohol and p-nitroso-N, N-dimethylaniline. The enzyme obeys a ping-pong mechanism and is competitively inhibited by an alcoholic substrate analogue, pyrazole, but not coenzyme analogues, such as AMP, N-methylnicotinamide. These results indicate that NAD(H) binds firmly (but not covalently) at each active site. The enzyme-bound NAD(H) was reduced and oxidized only by the added second substrates, alcohol and aldehyde respectively, and not by exogenous electron acceptors [including NAD(H)]. << Less
-
P. putida formaldehyde dehydrogenase. An alcohol dehydrogenase masquerading as an aldehyde dehydrogenase.
Oppenheimer N.J., Henehan G.T., Huete-Perez J.A., Ito K.
Adv. Exp. Med. Biol. 414:417-423(1997) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Formaldehyde dehydrogenase from Pseudomonas putida: a zinc metalloenzyme.
Ogushi S., Ando M., Tsuru D.
The NAD+-dependent formaldehyde dehydrogenase from Pseudomonas putida C-83 was found to contain 4 gram atoms of zinc per mol, corresponding to 2 gram atoms of zinc per subunit monomer. Treatment of the enzyme with o-phenanthroline resulted in removal of 1 gram atom of zinc per subunit and caused a ... >> More
The NAD+-dependent formaldehyde dehydrogenase from Pseudomonas putida C-83 was found to contain 4 gram atoms of zinc per mol, corresponding to 2 gram atoms of zinc per subunit monomer. Treatment of the enzyme with o-phenanthroline resulted in removal of 1 gram atom of zinc per subunit and caused a complete inactivation of the enzyme. The activity lost was restored by the addition of zinc ions, by which the zinc content was also reversed to almost the same level as that of the native enzyme. Another zinc atom that was resistant to metal chelator-treatment was liberated from the enzyme only after the irreversible denaturation of the enzyme. These results indicate that the formaldehyde dehydrogenase of P. putida is a zinc metalloenzyme and one of two zinc atoms per subunit participates in the catalytic activity of the enzyme, another zinc being presumably involved in maintaining the native conformation of the enzyme. Treatment of the enzyme with bipyridine also caused a reversible inactivation of the enzyme, but the zinc content remained unchanged. The spectrophotometric analysis indicated that the formation of a enzyme-Zn-bipyridine complex took place. Incubation of the enzyme with p-chloromercuribenzoate also resulted in a complete loss of the activity. These results suggest that an intrinsic zinc and sulfhydryl group together with NAD+ participate in the dehydrogenation reaction of substrate by the enzyme. << Less
J. Biochem. 96:1587-1591(1984) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.