Enzymes
UniProtKB help_outline | 57,567 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N6-[(R)-lipoyl]-L-lysyl-[dihydrolipoyllysine-residue acetyltransferase]
Identifier
RHEA-COMP:10480
Reactive part
help_outline
- Name help_outline N6-[(R)-lipoyl]-L-lysine residue Identifier CHEBI:83099 Charge 0 Formula C14H24N2O2S2 SMILEShelp_outline *-N[C@@H](CCCCNC(=O)CCCC[C@@H]1CCSS1)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (Beilstein: 3587721; CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N6-[(R)-S8-acetyldihydrolipoyl]-L-lysyl-[dihydrolipoyllysine-residue acetyltransferase]
Identifier
RHEA-COMP:10481
Reactive part
help_outline
- Name help_outline N6-[(R)-S8-acetyldihydrolipoyl]-L-lysine residue Identifier CHEBI:83111 Charge 0 Formula C16H28N2O3S2 SMILEShelp_outline CC(=O)SCC[C@H](S)CCCCC(=O)NCCCC[C@H](N-*)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19189 | RHEA:19190 | RHEA:19191 | RHEA:19192 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
[Production of alpha-hydroxyethyl-2-thiamine pyrophosphate with pyruvate oxidase from pig heart muscle].
SCRIBA P., HOLZER H.
-
Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions.
Perham R.N.
Multistep chemical reactions are increasingly seen as important in a growing number of complex biotransformations. Covalently attached prosthetic groups or swinging arms, and their associated protein domains, are essential to the mechanisms of active-site coupling and substrate channeling in a num ... >> More
Multistep chemical reactions are increasingly seen as important in a growing number of complex biotransformations. Covalently attached prosthetic groups or swinging arms, and their associated protein domains, are essential to the mechanisms of active-site coupling and substrate channeling in a number of the multifunctional enzyme systems responsible. The protein domains, for which the posttranslational machinery in the cell is highly specific, are crucially important, contributing to the processes of molecular recognition that define and protect the substrates and the catalytic intermediates. The domains have novel folds and move by virtue of conformationally flexible linker regions that tether them to other components of their respective multienzyme complexes. Structural and mechanistic imperatives are becoming apparent as the assembly pathways and the coupling of multistep reactions catalyzed by these dauntingly complex molecular machines are unraveled. << Less
Annu Rev Biochem 69:961-1004(2000) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Enzymic mechanisms in the citric acid cycle.
OCHOA S.
Adv Enzymol Relat Subj Biochem 15:183-270(1954) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.