Reaction participants Show >> << Hide
- Name help_outline a hydroperoxy polyunsaturated fatty acid Identifier CHEBI:134019 Charge -1 Formula CHO4R SMILEShelp_outline *(C([O-])=O)OO 2D coordinates Mol file for the small molecule Search links Involved in 147 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glutathione Identifier CHEBI:57925 Charge -1 Formula C10H16N3O6S InChIKeyhelp_outline RWSXRVCMGQZWBV-WDSKDSINSA-M SMILEShelp_outline [NH3+][C@@H](CCC(=O)N[C@@H](CS)C(=O)NCC(=O)[O-])C(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 104 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a hydroxy polyunsaturated fatty acid Identifier CHEBI:131871 Charge -1 Formula CHO3R SMILEShelp_outline O*C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 94 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glutathione disulfide Identifier CHEBI:58297 Charge -2 Formula C20H30N6O12S2 InChIKeyhelp_outline YPZRWBKMTBYPTK-BJDJZHNGSA-L SMILEShelp_outline [NH3+][C@@H](CCC(=O)N[C@@H](CSSC[C@H](NC(=O)CC[C@H]([NH3+])C([O-])=O)C(=O)NCC([O-])=O)C(=O)NCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 37 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19057 | RHEA:19058 | RHEA:19059 | RHEA:19060 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
- RHEA:76717
- RHEA:76713
- RHEA:76709
- RHEA:76705
- RHEA:76701
- RHEA:76697
- RHEA:76693
- RHEA:76689
- RHEA:75837
- RHEA:50710
- RHEA:48890
- RHEA:48622
More general form(s) of this reaction
Publications
-
The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products.
Schnurr K., Belkner J., Ursini F., Schewe T., Kuehn H.
Mammalian 15-lipoxygenases have been suggested to be involved in cell differentiation and atherogenesis because of their capability of oxygenating polyenoic fatty acids esterified to biomembranes and lipoproteins. We investigated the interaction of the lipid-peroxidizing 15-lipoxygenase and the hy ... >> More
Mammalian 15-lipoxygenases have been suggested to be involved in cell differentiation and atherogenesis because of their capability of oxygenating polyenoic fatty acids esterified to biomembranes and lipoproteins. We investigated the interaction of the lipid-peroxidizing 15-lipoxygenase and the hydroperoxy lipid-reducing phospholipid hydroperoxide glutathione peroxidase during their reaction with biomembranes and lipoproteins and obtained the following results. 1) Lipoxygenase treatment of submitochondrial membranes led to the formation of hydroperoxyphosphatidylethanolamine and hydroperoxyphosphatidylcholine as indicated by high performance liquid chromatography with chemiluminescence detection. In 15-lipoxygenase-treated low density lipoprotein cholesteryl hydroperoxylinoleate was the major oxygenation product. 2) Phospholipid hydroperoxide glutathione peroxidase was capable of reducing the hydroperoxy lipids formed by the 15-lipoxygenase to their corresponding alcohols. 3) Preincubation of low density lipoprotein and submitochondrial membranes with the phospholipid hydroperoxide glutathione peroxidase completely prevented the lipoxygenase reaction. However, addition of exogenous hydroperoxy lipids restored the oxygenase activity. 4) Short-term incubations of the complex substrates with the 15-lipoxygenase led to a specific pattern of oxidation products which was rendered more unspecific at long-term incubation or at high substrate concentrations. If the phosholipid hydroperoxide glutathione peroxidase was present during the reaction, the specific product pattern was preserved. These data indicate that the phospholipid hydroperoxide glutathione peroxidase is capable of reducing hydroperoxy ester lipids formed by a 15-lipoxygenase, and that it may down-regulate the 15-lipoxygenase pathways in mammalian cells. The specificity of 15-lipoxygenase-derived hydroperoxy lipids depends on their immediate reduction to the corresponding alcohols preventing postcatalytic isomerization. << Less
J. Biol. Chem. 271:4653-4658(1996) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
The selenoenzyme phospholipid hydroperoxide glutathione peroxidase.
Ursini F., Maiorino M., Gregolin C.
The reduction of membrane-bound hydroperoxides is a major factor acting against lipid peroxidation in living systems. This paper presents the characterization of the previously described 'peroxidation-inhibiting protein' as a 'phospholipid hydroperoxide glutathione peroxidase'. The enzyme is a mon ... >> More
The reduction of membrane-bound hydroperoxides is a major factor acting against lipid peroxidation in living systems. This paper presents the characterization of the previously described 'peroxidation-inhibiting protein' as a 'phospholipid hydroperoxide glutathione peroxidase'. The enzyme is a monomer of 23 kDa (SDS-polyacrylamide gel electrophoresis). It contains one gatom Se/22 000 g protein. Se is in the selenol form, as indicated by the inactivation experiments in the presence of iodoacetate under reducing conditions. The glutathione peroxidase activity is essentially the same on different phospholipids enzymatically hydroperoxidized by the use of soybean lipoxidase (EC 1.13.11.12) in the presence of deoxycholate. The kinetic data are compatible with a tert-uni ping-pong mechanism, as in the case of the 'classical' glutathione peroxidase (EC 1.11.1.9). The second-order rate constants (K1) for the reaction of the enzyme with the hydroperoxide substrates indicate that, while H2O2 is reduced faster by the glutathione peroxidase, linoleic acid hydroperoxide is reduced faster by the present enzyme. Moreover, the phospholipid hydroperoxides are reduced only by the latter. The dramatic stimulation exerted by Triton X-100 on the reduction of the phospholipid hydroperoxides suggests that this enzyme has an 'interfacial' character. The similarity of amino acid composition, Se content and kinetic mechanism, relative to the difference in substrate specificity, indicates that the two enzymes 'classical' glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are in some way related. The latter is apparently specialized for lipophylic, interfacial substrates. << Less
Biochim. Biophys. Acta 839:62-70(1985) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Phospholipid hydroperoxide glutathione peroxidase of rat testis. Gonadotropin dependence and immunocytochemical identification.
Roveri A., Casasco A., Maiorino M., Dalan P., Calligaro A., Ursini F.
A high glutathione peroxidase activity toward phospholipid hydroperoxides is present in rat testis. The attribution of this activity to the selenoenzyme phospholipid hydroperoxide glutathione peroxidase (PHGPX) was supported by cross-reactivity with antibodies raised against pig heart PHGPX which ... >> More
A high glutathione peroxidase activity toward phospholipid hydroperoxides is present in rat testis. The attribution of this activity to the selenoenzyme phospholipid hydroperoxide glutathione peroxidase (PHGPX) was supported by cross-reactivity with antibodies raised against pig heart PHGPX which had been purified and characterized. Rat testis PHGPX is partially cytosolic and partially linked to nuclei and mitochondria. The soluble and organelle-bound enzymes appear identical by Western blot analysis. PHGPX, but neither selenium-dependent nor non-selenium-dependent glutathione peroxidase activity, is expressed in testes only after puberty, disappears after hypophysectomy, and is partially restored by gonadotropin treatment. Specific immunostaining of testes by antiserum against PHGPX appears as a fine granular brown pattern localized throughout the cytoplasm in more immature cells but is confined to the peripheral part of the cytoplasm, the nuclear membrane, and mitochondria in maturating spermatogenic cells. As expected, immunostaining of spermatogenic cells in hypophysectomized animals was negative, but gonadotropin treatment only marginally increased the immunoreactivity. The expression of PHGPX in testes is consistent with the previously described specific requirement for selenium for synthesis of a 15-20-kDa selenoprotein which is related to the production of functional spermatozoa. << Less