Reaction participants Show >> << Hide
- Name help_outline an epoxide Identifier CHEBI:32955 Charge 0 Formula C2OR4 SMILEShelp_outline [*]C1([*])OC1([*])[*] 2D coordinates Mol file for the small molecule Search links Involved in 191 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an ethanediol Identifier CHEBI:140594 Charge 0 Formula C2H2O2R4 SMILEShelp_outline OC(C(O)(*)*)(*)* 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19037 | RHEA:19038 | RHEA:19039 | RHEA:19040 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
- RHEA:80594
- RHEA:56587
- RHEA:45355
- RHEA:44051
- RHEA:44047
- RHEA:44043
- RHEA:44039
- RHEA:44035
- RHEA:23903
- RHEA:16668
- RHEA:15116
- RHEA:11967
Publications
-
Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids.
Yu Z., Xu F., Huse L.M., Morisseau C., Draper A.J., Newman J.W., Parker C., Graham L., Engler M.M., Hammock B.D., Zeldin D.C., Kroetz D.L.
The cytochrome P450-derived epoxyeicosatrienoic acids (EETs) have potent effects on renal vascular reactivity and tubular sodium and water transport; however, the role of these eicosanoids in the pathogenesis of hypertension is controversial. The current study examined the hydrolysis of the EETs t ... >> More
The cytochrome P450-derived epoxyeicosatrienoic acids (EETs) have potent effects on renal vascular reactivity and tubular sodium and water transport; however, the role of these eicosanoids in the pathogenesis of hypertension is controversial. The current study examined the hydrolysis of the EETs to the corresponding dihydroxyeicosatrienoic acids (DHETs) as a mechanism for regulation of EET activity and blood pressure. EET hydrolysis was increased 5-to 54-fold in renal cortical S9 fractions from the spontaneously hypertensive rat (SHR) relative to the normotensive Wistar-Kyoto (WKY) rat. This increase was most significant for the 14,15-EET regioisomer, and there was a clear preference for hydrolysis of 14, 15-EET over the 8,9- and 11,12-EETs. Increased EET hydrolysis was consistent with increased expression of soluble epoxide hydrolase (sEH) in the SHR renal microsomes and cytosol relative to the WKY samples. The urinary excretion of 14,15-DHET was 2.6-fold higher in the SHR than in the WKY rat, confirming increased EET hydrolysis in the SHR in vivo. Blood pressure was decreased 22+/-4 mm Hg (P:<0.01) 6 hours after treatment of SHRs with the selective sEH inhibitor N:, N:'-dicyclohexylurea; this treatment had no effect on blood pressure in the WKY rat. These studies identify sEH as a novel therapeutic target for control of blood pressure. The identification of a potent and selective inhibitor of EET hydrolysis will be invaluable in separating the vascular effects of the EET and DHET eicosanoids. << Less
-
The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity.
Newman J.W., Morisseau C., Harris T.R., Hammock B.D.
The gene EPXH2 encodes for the soluble epoxide hydrolase (sEH), an enzyme involved in the regulation of cardiovascular and renal physiology containing two distinct domains connected via a proline-rich linker. The C-terminal domain containing the EH catalytic activity has been well studied. In cont ... >> More
The gene EPXH2 encodes for the soluble epoxide hydrolase (sEH), an enzyme involved in the regulation of cardiovascular and renal physiology containing two distinct domains connected via a proline-rich linker. The C-terminal domain containing the EH catalytic activity has been well studied. In contrast, a function for the N-terminal domain, which has high homology to the haloacid dehalogenase family of phosphatases, has not been definitively reported. In this study we describe the N-terminal domain as a functional phosphatase unaffected by a number of classic phosphatase inhibitors. Assuming a functional association between these catalytic activities, dihydroxy lipid phosphates were rationalized as potential endogenous substrates. A series of phosphorylated hydroxy lipids were therefore synthesized and found to be excellent substrates for the human sEH. The best substrate tested was the monophosphate of dihydroxy stearic acid (threo-910-phosphonoxy-hydroxy-octadecanoic acid) with K(m) = 21 +/-0.3 microM, V(Max) = 338 +/- 12 nmol x min(-1) x mg(-1), and k(cat) = 0.35 +/-0.01 s(-1). Therefore dihydroxy lipid phosphates are possible candidates for the endogenous substrates of the sEH N-terminal domain, which would represent a novel branch of fatty acid metabolism with potential signaling functions. << Less
Proc. Natl. Acad. Sci. U.S.A. 100:1558-1563(2003) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Epoxide hydrolases: biochemistry and molecular biology.
Fretland A.J., Omiecinski C.J.
Epoxides are organic three-membered oxygen compounds that arise from oxidative metabolism of endogenous, as well as xenobiotic compounds via chemical and enzymatic oxidation processes, including the cytochrome P450 monooxygenase system. The resultant epoxides are typically unstable in aqueous envi ... >> More
Epoxides are organic three-membered oxygen compounds that arise from oxidative metabolism of endogenous, as well as xenobiotic compounds via chemical and enzymatic oxidation processes, including the cytochrome P450 monooxygenase system. The resultant epoxides are typically unstable in aqueous environments and chemically reactive. In the case of xenobiotics and certain endogenous substances, epoxide intermediates have been implicated as ultimate mutagenic and carcinogenic initiators Adams et al. (Chem. Biol. Interact. 95 (1995) 57-77) Guengrich (Properties and Metabolic roles 4 (1982) 5-30) Sayer et al. (J. Biol. Chem. 260 (1985) 1630-1640). Therefore, it is of vital importance for the biological organism to regulate levels of these reactive species. The epoxide hydrolases (E.C. 3.3.2. 3) belong to a sub-category of a broad group of hydrolytic enzymes that include esterases, proteases, dehalogenases, and lipases Beetham et al. (DNA Cell Biol. 14 (1995) 61-71). In particular, the epoxide hydrolases are a class of proteins that catalyze the hydration of chemically reactive epoxides to their corresponding dihydrodiol products. Simple epoxides are hydrated to their corresponding vicinal dihydrodiols, and arene oxides to trans-dihydrodiols. In general, this hydration leads to more stable and less reactive intermediates, however exceptions do exist. In mammalian species, there are at least five epoxide hydrolase forms, microsomal cholesterol 5,6-oxide hydrolase, hepoxilin A(3) hydrolase, leukotriene A(4) hydrolase, soluble, and microsomal epoxide hydrolase. Each of these enzymes is distinct chemically and immunologically. Table 1 illustrates some general properties for each of these classes of hydrolases. Fig. 1 provides an overview of selected model substrates for each class of epoxide hydrolase. << Less
Chem Biol Interact 129:41-59(2000) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Metabolism of epoxyeicosatrienoic acids by cytosolic epoxide hydrolase: substrate structural determinants of asymmetric catalysis.
Zeldin D.C., Wei S., Falck J.R., Hammock B.D., Snapper J.R., Capdevila J.H.
The metabolism of cis-epoxyeicosatrienoic acids (EETs), methyl cis-epoxyeicosatrienoates, and cis-epoxyeicosanoic acids by cytosolic epoxide hydrolase was studied to identify substrate structural features important for stereoselective metabolism and chiral diol formation. 14(R), 15(S)-, 11(S),12(R ... >> More
The metabolism of cis-epoxyeicosatrienoic acids (EETs), methyl cis-epoxyeicosatrienoates, and cis-epoxyeicosanoic acids by cytosolic epoxide hydrolase was studied to identify substrate structural features important for stereoselective metabolism and chiral diol formation. 14(R), 15(S)-, 11(S),12(R)-, and 8(S),9(R)-EET, the predominant enantiomers present endogenously in rat organs, were metabolized at substantially higher rates than their antipodes. With the exception of 8(R),9(S)-EET (Km = 41 microM), differences in enantiomer hydration rates appear to be caused by Km-independent factors since the apparent Km values for the enantiomers of 14,15-, 11,12-, and 8(S),9(R)-EET were similar (between 3 and 5 microM). Chiral analysis of the diols resulting from enzymatic hydration of homochiral EETs showed that the regio and/or stereochemistry of water addition was EET regioisomer dependent. For the 11,12-EET enantiomers, water addition was nonregioselective; whereas, with both 8,9-EET antipodes water addition occurred predominantly at C9. Importantly, for 14,15-EET the regiochemistry of water addition was enantiomer-dependent. Only with 14(R),15(S)-EET did enzymatic hydration result in regiospecific addition at C15. Hence, enantioselective EET hydration is determined, principally, by enantiomer specific differences in rates of catalytic turnover and/or substrate binding parameters. On the other hand, the chirality of the diol products is determined by EET enantiomer-dependent differences in the regiochemistry of enzymatic oxirane cleavage and water addition. Esterification resulted in an overall reduction in the rates of epoxide hydration for all three EET-methyl esters (59, 89, and 68% of the EET rate for 8,9-, 11,12-, and 14,15-EET-methyl ester, respectively) and in the loss of regioselectivity during methyl 8(S),9(R)-EET oxirane cleavage. Catalytic EET hydrogenation reduced the rates of EET hydration (56, 45, and 23% of the EET rates for 8,9-, 11,12-, and 14,15-epoxyeicosanoic acids, respectively). Compared to 14,15-EET, enzyme catalyzed hydration of 14,15-epoxyeicosanoic acid was less regioselective and yielded products with a substantially lower chiral purity. Based on these data, as well as on the documentation of 14(R),15(R)-dihydroxyeicosatrienoic acid as an endogenous constituent of rat urine we concluded that: (1) cytosolic epoxide hydrolase plays a significant role in the regio- and stereoselective metabolism of endogenous EETs; (2) differences in the affinities and/or turnover rates of the enzyme for the individual EET antipodes may be responsible for enantioselective EET metabolism; and (3) for 14,15- and 8,9-EET, regioselective and/or enantioselective oxirane water addition is responsible for asymmetric diol formation.(ABSTRACT TRUNCATED AT 400 WORDS) << Less
Arch. Biochem. Biophys. 316:443-451(1995) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.
-
Epoxide hydrolases: their roles and interactions with lipid metabolism.
Newman J.W., Morisseau C., Hammock B.D.
The epoxide hydrolases (EHs) are enzymes present in all living organisms, which transform epoxide containing lipids by the addition of water. In plants and animals, many of these lipid substrates have potent biologically activities, such as host defenses, control of development, regulation of infl ... >> More
The epoxide hydrolases (EHs) are enzymes present in all living organisms, which transform epoxide containing lipids by the addition of water. In plants and animals, many of these lipid substrates have potent biologically activities, such as host defenses, control of development, regulation of inflammation and blood pressure. Thus the EHs have important and diverse biological roles with profound effects on the physiological state of the host organisms. Currently, seven distinct epoxide hydrolase sub-types are recognized in higher organisms. These include the plant soluble EHs, the mammalian soluble epoxide hydrolase, the hepoxilin hydrolase, leukotriene A4 hydrolase, the microsomal epoxide hydrolase, and the insect juvenile hormone epoxide hydrolase. While our understanding of these enzymes has progressed at different rates, here we discuss the current state of knowledge for each of these enzymes, along with a distillation of our current understanding of their endogenous roles. By reviewing the entire enzyme class together, both commonalities and discrepancies in our understanding are highlighted and important directions for future research pertaining to these enzymes are indicated. << Less
Prog Lipid Res 44:1-51(2005) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Leukotriene A4. Enzymatic conversion into 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid by mouse liver cytosolic epoxide hydrolase.
Haeggstrom J., Meijer J., Radmark O.
Mouse liver homogenates transformed leukotriene A4 into a 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid. This novel enzymatic metabolite of leukotriene A4 was characterized by physical means including ultraviolet spectroscopy, high performance liquid chromatography, and gas chromatography-mass spe ... >> More
Mouse liver homogenates transformed leukotriene A4 into a 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid. This novel enzymatic metabolite of leukotriene A4 was characterized by physical means including ultraviolet spectroscopy, high performance liquid chromatography, and gas chromatography-mass spectrometry. After subcellular fractionation, the enzymatic activity was mostly recovered in the 105,000 X g supernatant and 20,000 X g pellet. Heat treatment (80 degrees C, 10 min) or digestion with a proteolytic enzyme abolished the enzymatic activity in the high speed supernatant. A purified cytosolic epoxide hydrolase from mouse liver also transformed leukotriene A4 into a 5,6-dihydroxyeicosatetraenoic acid with the same physico-chemical characteristics as the compound formed in crude cytosol, but not into leukotriene B4, a compound previously reported to be formed in liver cytosol (Haeggström, J., Rådmark, O., and Fitzpatrick, F.A. (1985) Biochim. Biophys. Acta 835, 378-384). These findings suggest a role for leukotriene A4 as an endogenous substrate for cytosolic epoxide hydrolase, an enzyme earlier characterized by xenobiotic substrates. Furthermore, they indicate that leukotriene A4 hydrolase in liver cytosol is a distinct enzyme, separate from previously described forms of epoxide hydrolases in liver. << Less
J Biol Chem 261:6332-6337(1986) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Asp333, Asp495, and His523 form the catalytic triad of rat soluble epoxide hydrolase.
Arand M., Wagner H., Oesch F.
On the basis of the sequence similarity between mammalian epoxide hydrolases and bacterial haloalkane dehalogenase reported earlier (Arand, M., Grant, D. F., Beetham, J. K., Friedberg, T., Oesch, F., and Hammock, B. D. (1994) FEBS Lett. 338, 251-256; Beetham, J. K., Grant, D., Arand, M., Garbarino ... >> More
On the basis of the sequence similarity between mammalian epoxide hydrolases and bacterial haloalkane dehalogenase reported earlier (Arand, M., Grant, D. F., Beetham, J. K., Friedberg, T., Oesch, F., and Hammock, B. D. (1994) FEBS Lett. 338, 251-256; Beetham, J. K., Grant, D., Arand, M., Garbarino, J., Kiyosue, T., Pinot, F., Oesch, F., Belknap, W. R., Shinozaki, K., and hammock, B. D. (1995) DNA Cell. Biol. 14, 61-71) we selected candidate amino acid residues for the putative catalytic triad of the rat soluble epoxide hydrolase. The predicted amino acid residues were exchanged by site-directed mutagenesis of the epoxide hydrolase cDNA, followed by the expression of the respective mutant enzymes in Escherichia coli. A total of 25 different mutants were analyzed for their epoxide hydrolase activity toward the model substrate trans-stilbene oxide. In case of impaired catalytic activity of a given mutant, the structural integrity of the recombinant enzyme protein was assessed either by its ability to covalently bind the substrate trans-stilbene oxide or by affinity purification on benzyl thio-Sepharose, using the soluble epoxide hydrolase-specific competitive inhibitor 4-fluorochalcone oxide to release the bound enzyme from the affinity matrix. Of the mutants under investigation, only those with changes in the positions Asp333, Asp495, and His523 were completely inactive toward the model substrate trans-stilbene oxide while retaining the proper protein fold. These amino acids were exactly those previously predicted by sequence alignment. Exchange of the amino acid residues flanking the catalytic nucleophile Asp333 significantly changed the kinetic properties of the enzyme. Mutation of His332 to Gln had no apparent effect on the Km but led to a heavily reduced Vmax (5% that of the wild type) of the mutant enzyme, while the exchange of Trp334 against Phe strongly increased the Km (7-fold) and also moderately enhanced the Vmax (2-fold) of the corresponding mutant. Mutation of Trp540 apparently had a strong effect on the protein conformation. << Less
-
The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase.
Cronin A., Mowbray S., Durk H., Homburg S., Fleming I., Fisslthaler B., Oesch F., Arand M.
The mammalian soluble epoxide hydrolase (sEH) is an enzyme with multiple functions, being implicated in detoxification of xenobiotic epoxides as well as in regulation of physiological processes such as blood pressure. The enzyme is a homodimer, in which each subunit is composed of two domains. The ... >> More
The mammalian soluble epoxide hydrolase (sEH) is an enzyme with multiple functions, being implicated in detoxification of xenobiotic epoxides as well as in regulation of physiological processes such as blood pressure. The enzyme is a homodimer, in which each subunit is composed of two domains. The 35-kDa C-terminal domain has an alpha/beta hydrolase fold and harbors the catalytic center for the EH activity. The 25-kDa N-terminal domain has a different alpha/beta fold and belongs to the haloacid dehalogenase superfamily of enzymes. The catalytic properties of the enzyme reported so far can all be explained by the action of the C-terminal domain alone. The function of the N-terminal domain, other than in structural stabilization of the dimer, has therefore remained unclear. By structural comparison of this domain to other haloacid dehalogenase family members, we identified a putative active site containing all necessary components for phosphatase activity. Subsequently, we found rat sEH hydrolyzed 4-nitrophenyl phosphate with a rate constant of 0.8 s(-1) and a K(m) of 0.24 mM. Recombinant human sEH lacking the C-terminal domain also displayed phosphatase activity. Presence of a phosphatase substrate did not affect epoxide turnover nor did epoxides affect dephosphorylation by the intact enzyme, indicating both catalytic sites act independently. The enzyme was unable to hydrolyze 4-nitrophenyl sulfate, suggesting its role in xenobiotic metabolism does not extend beyond phosphates. Thus, we propose this domain participates instead in the regulation of the physiological functions associated with sEH. << Less
Proc. Natl. Acad. Sci. U.S.A. 100:1552-1557(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structure of an atypical epoxide hydrolase from Mycobacterium tuberculosis gives insights into its function.
Johansson P., Unge T., Cronin A., Arand M., Bergfors T., Jones T.A., Mowbray S.L.
Epoxide hydrolases are vital to many organisms by virtue of their roles in detoxification, metabolism and processing of signaling molecules. The Mycobacterium tuberculosis genome encodes an unusually large number of epoxide hydrolases, suggesting that they might be of particular importance to thes ... >> More
Epoxide hydrolases are vital to many organisms by virtue of their roles in detoxification, metabolism and processing of signaling molecules. The Mycobacterium tuberculosis genome encodes an unusually large number of epoxide hydrolases, suggesting that they might be of particular importance to these bacteria. We report here the first structure of an epoxide hydrolase from M.tuberculosis, solved to a resolution of 2.5 A using single-wavelength anomalous dispersion (SAD) from a selenomethionine-substituted protein. The enzyme features a deep active-site pocket created by the packing of three helices onto a curved six-stranded beta-sheet. This structure is similar to a previously described limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis and unlike the alpha/beta-hydrolase fold typical of mammalian epoxide hydrolases (EH). A number of changes in the mycobacterial enzyme create a wider and deeper substrate-binding pocket than is found in its Rhodococcus homologue. Interestingly, each structure contains a different type of endogenous ligand of unknown origin bound in its active site. As a consequence of its wider substrate-binding pocket, the mycobacterial EH is capable of hydrolyzing long or bulky lipophilic epoxides such as 10,11-epoxystearic acid and cholesterol 5,6-oxide at appreciable rates, suggesting that similar compound(s) will serve as its physiological substrate(s). << Less
J. Mol. Biol. 351:1048-1056(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles.
Morisseau C., Hammock B.D.
Organisms are exposed to epoxide-containing compounds from both exogenous and endogenous sources. In mammals, the hydration of these compounds by various epoxide hydrolases (EHs) can not only regulate their genotoxicity but also, for lipid-derived epoxides, their endogenous roles as chemical media ... >> More
Organisms are exposed to epoxide-containing compounds from both exogenous and endogenous sources. In mammals, the hydration of these compounds by various epoxide hydrolases (EHs) can not only regulate their genotoxicity but also, for lipid-derived epoxides, their endogenous roles as chemical mediators. Recent findings suggest that the EHs as a family represent novel drug discovery targets for regulation of blood pressure, inflammation, cancer progression, and the onset of several other diseases. Knowledge of the EH mechanism provides a solid foundation for the rational design of inhibitors, and this review summarizes the current understanding of the catalytic mechanism of the EHs. Although the overall EH mechanism is now known, the molecular basis of substrate selectivity, possible allosteric regulation, and many fine details of the catalytic mechanism remain to be solved. Finally, recent development in the design of EH inhibitors and the EH biological role are discussed. << Less
Annu Rev Pharmacol Toxicol 45:311-333(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
EH3 (ABHD9): the first member of a new epoxide hydrolase family with high activity for fatty acid epoxides.
Decker M., Adamska M., Cronin A., Di Giallonardo F., Burgener J., Marowsky A., Falck J.R., Morisseau C., Hammock B.D., Gruzdev A., Zeldin D.C., Arand M.
Epoxide hydrolases are a small superfamily of enzymes important for the detoxification of chemically reactive xenobiotic epoxides and for the processing of endogenous epoxides that act as signaling molecules. Here, we report the identification of two human epoxide hydrolases: EH3 and EH4. They sha ... >> More
Epoxide hydrolases are a small superfamily of enzymes important for the detoxification of chemically reactive xenobiotic epoxides and for the processing of endogenous epoxides that act as signaling molecules. Here, we report the identification of two human epoxide hydrolases: EH3 and EH4. They share 45% sequence identity, thus representing a new family of mammalian epoxide hydrolases. Quantitative RT-PCR from mouse tissue indicates strongest EH3 expression in lung, skin, and upper gastrointestinal tract. The recombinant enzyme shows a high turnover number with 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid (EET), as well as 9,10-epoxyoctadec-11-enoic acid (leukotoxin). It is inhibited by a subclass of N,N'-disubstituted urea derivatives, including 12-(3-adamantan-1-yl-ureido)-dodecanoic acid, 1-cyclohexyl-3-dodecylurea, and 1-(1-acetylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea, compounds so far believed to be selective inhibitors of mammalian soluble epoxide hydrolase (sEH). Its sensitivity to this subset of sEH inhibitors may have implications on the pharmacologic profile of these compounds. This is particularly relevant because sEH is a potential drug target, and clinical trials are under way exploring the value of sEH inhibitors in the treatment of hypertension and diabetes type II. << Less
J. Lipid Res. 53:2038-2045(2012) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Mammalian epoxide hydrases: inducible enzymes catalysing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds.
Oesch F.
-
A leukotriene A4 hydrolase-related aminopeptidase from yeast undergoes induced fit upon inhibitor binding.
Helgstrand C., Hasan M., Uysal H., Haeggstrom J.Z., Thunnissen M.M.
Vertebrate leukotriene A(4) hydrolases are bifunctional zinc metalloenzymes with an epoxide hydrolase and an aminopeptidase activity. In contrast, highly homologous enzymes from lower organisms only have the aminopeptidase activity. From sequence comparisons, it is not clear why this difference oc ... >> More
Vertebrate leukotriene A(4) hydrolases are bifunctional zinc metalloenzymes with an epoxide hydrolase and an aminopeptidase activity. In contrast, highly homologous enzymes from lower organisms only have the aminopeptidase activity. From sequence comparisons, it is not clear why this difference occurs. In order to obtain more information on the evolutionary relationship between these enzymes and their activities, the structure of a closely related leucine aminopeptidase from Saccharomyces cerevisiae that only shows a very low epoxide hydrolase activity was determined. To investigate the molecular architecture of the active site, the structures of both the native protein and the protein in complex with the aminopeptidase inhibitor bestatin were solved. These structures show a more spacious active site, and the protected cavity in which the labile substrate leukotriene A(4) is bound in the human enzyme is partially obstructed and in other parts is more solvent accessible. Furthermore, the enzyme undergoes induced fit upon binding of the inhibitor bestatin, leading to a movement of the C-terminal domain. The main triggers for the domain movement are a conformational change of Tyr312 and a subtle change in backbone conformation of the PYGAMEN fingerprint region for peptide substrate recognition. This leads to a change in the hydrogen-bonding network pulling the C-terminal domain into a different position. Inasmuch as bestatin is a structural analogue of a leucyl dipeptide and may be regarded as a transition state mimic, our results imply that the enzyme undergoes induced fit during substrate binding and turnover. << Less
-
Identification of two epoxide hydrolases in Caenorhabditis elegans that metabolize mammalian lipid signaling molecules.
Harris T.R., Aronov P.A., Jones P.D., Tanaka H., Arand M., Hammock B.D.
We have identified two genes in the genomic database for Caenorhabditis elegans that code for proteins with significant sequence similarity to the mammalian soluble epoxide hydrolase (sEH). The respective transcripts were cloned from a mixed stage cDNA library from C. elegans. The corresponding pr ... >> More
We have identified two genes in the genomic database for Caenorhabditis elegans that code for proteins with significant sequence similarity to the mammalian soluble epoxide hydrolase (sEH). The respective transcripts were cloned from a mixed stage cDNA library from C. elegans. The corresponding proteins obtained after recombinant expression in insect cells hydrolyzed standard epoxide hydrolase substrates, including epoxyeicosatrienoic acids (EETs) and leukotoxins (EpOMEs). The enzyme activity was inhibited by urea-based compounds originally designed to inhibit the mammalian sEH. In vivo inhibition of the enzymes using the most potent of these compounds resulted in elevated levels of the EpOMEs in the nematode. These results suggest that the hydrolases are involved in the metabolism of possible lipid signaling molecules in C. elegans. << Less
Arch. Biochem. Biophys. 472:139-149(2008) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.