Enzymes
UniProtKB help_outline | 2,607 proteins |
Reaction participants Show >> << Hide
- Name help_outline CTP Identifier CHEBI:37563 (Beilstein: 4732530) help_outline Charge -4 Formula C9H12N3O14P3 InChIKeyhelp_outline PCDQPRRSZKQHHS-XVFCMESISA-J SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 81 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphocholine Identifier CHEBI:295975 Charge -1 Formula C5H13NO4P InChIKeyhelp_outline YHHSONZFOIEMCP-UHFFFAOYSA-M SMILEShelp_outline C[N+](C)(C)CCOP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 35 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CDP-choline Identifier CHEBI:58779 (Beilstein: 4170622) help_outline Charge -1 Formula C14H25N4O11P2 InChIKeyhelp_outline RZZPDXZPRHQOCG-OJAKKHQRSA-M SMILEShelp_outline C[N+](C)(C)CCOP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1ccc(N)nc1=O 2D coordinates Mol file for the small molecule Search links Involved in 19 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18997 | RHEA:18998 | RHEA:18999 | RHEA:19000 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Identification of lysine 122 and arginine 196 as important functional residues of rat CTP:phosphocholine cytidylyltransferase alpha.
Helmink B.A., Braker J.D., Kent C., Friesen J.A.
CTP:phosphocholine cytidylyltransferase alpha (CCTalpha) contains a central region that functions as a catalytic domain, converting phosphocholine and cytidine 5'-triphosphate (CTP) to CDP-choline for the subsequent synthesis of phosphatidylcholine. We have investigated the catalytic role of lysin ... >> More
CTP:phosphocholine cytidylyltransferase alpha (CCTalpha) contains a central region that functions as a catalytic domain, converting phosphocholine and cytidine 5'-triphosphate (CTP) to CDP-choline for the subsequent synthesis of phosphatidylcholine. We have investigated the catalytic role of lysine 122 and arginine 196 of rat CCTalpha using site-directed mutagenesis and a baculovirus expression system. Arginine 196 is part of the highly conserved RTEGIST motif, while lysine 122 has not previously been identified by protein sequence alignment as a candidate catalytic amino acid. Removing the side chain of lysine 122 compromises the catalytic ability of CCTalpha, decreasing the apparent V(max) value in mutant enzymes Lys122Ala and Lys122Arg to 0.30 and 0.09% of the wild-type value, respectively. The decrease in V(max) is accompanied by dramatic 471- and 80-fold increases in the apparent K(m) value for phosphocholine but no greater than 3-fold increases in the apparent Hill constant (K*) value for CTP. Mutation of arginine 196 to lysine results in an enzyme that retains 24% of the wild-type V(max) value with a modest 5-fold increase in the K(m) value for phosphocholine. However, the Arg196Lys mutant enzyme exhibits a 23-fold increase in the K* value for CTP. These data suggest lysine 122 and arginine 196 of rat CTP:phosphocholine cytidylyltransferase are functionally important amino acids, perhaps at or near the active site involved in forming contacts with the substrates phosphocholine and CTP, respectively. << Less
-
Kinetic and biochemical properties of CTP:choline-phosphate cytidylyltransferase from the rat brain.
Mages F., Rey C., Fonlupt P., Pacheco H.
In order to investigate the mechanisms involved in some brain disorders at the membrane level, we studied the kinetics and biochemical properties of brain CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15), the rate-limiting enzyme of the two-step biosynthesis of phosphatidylcholine. This en ... >> More
In order to investigate the mechanisms involved in some brain disorders at the membrane level, we studied the kinetics and biochemical properties of brain CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15), the rate-limiting enzyme of the two-step biosynthesis of phosphatidylcholine. This enzyme catalyzes the biosynthesis of CDPcholine from choline phosphate and CTP. We found that its subcellular localization (mainly in microsomal and cytosolic fractions) was different from that of phosphatidylethanolamine N-methyltransferase (EC 2.1.1.17), the enzyme of the alternative pathway for phosphatidylcholine synthesis. CTP:choline-phosphate cytidylyltransferase showed a Km of 10 mM for CTP and 0.3 mM for choline phosphate and exhibited a random mechanism. CDPcholine, the reaction product, was a competitive inhibitor of choline phosphate and CTP utilization and had a Ki of 0.090 mM. Both particulate and soluble enzymes required Mg2+ and exhibited an optimal pH at about 7. Cytosolic activity was enhanced by addition of unsaturated fatty acids or phospholipids extracted from brain membranes. Such an enhancement was increased with the centrifugation time used for preparing the soluble enzyme. << Less
-
The role of histidine residues in the HXGH site of CTP:phosphocholine cytidylyltransferase in CTP binding and catalysis.
Veitch D.P., Gilham D., Cornell R.B.
The HXGH motif of CTP:phosphocholine cytidylyltransferase (CCT) is a unifying feature of the cytidylyltransferase family which has been proposed to function in binding of CTP and catalysis [Veitch, D. P. & Cornell, R. B. (1996) Biochemistry 35, 10743-10750]. Substitution of serine for Gly91 in the ... >> More
The HXGH motif of CTP:phosphocholine cytidylyltransferase (CCT) is a unifying feature of the cytidylyltransferase family which has been proposed to function in binding of CTP and catalysis [Veitch, D. P. & Cornell, R. B. (1996) Biochemistry 35, 10743-10750]. Substitution of serine for Gly91 in the HXGH motif of CCT implicates this motif in CTP-binding [Park, Y. S., Gee, P., Sanker, S., Schuster, E. J., Zuiderweg, E. R. & Kent, C. (1997) J. Biol. Chem. 272, 15161]. The model for CTP binding involves hydrogen bond contacts between the histidine imidazole and the CTP phosphate oxygens. We have mutated His89 and His92 to Gly or Ala, which eliminate potential hydrogen bonds, and to Asn or Gln, which conserve these interactions. Mutation to Gly or Ala at both positions, and the H89Q mutation resulted in inactive enzymes. The Vmax of [N89]CT was 100-fold lower than that of wild-type CCT, but CTP binding was not perturbed, suggesting an involvement of His89 in transition-state stabilization. The H92N mutation reduced Vmax and increased the Kms for both substrates fivefold. The H92Q mutation had little effect on substrate binding or Vmax. These data suggest that the Gln92 NH2, and not the Asn NH2, is able to substitute for the histidine NH, and implicates the tau nitrogen of His92 in forming contacts with CTP. This work strengthens the hypothesis that the HXGH motif is involved in the binding of CTP and transition-state stabilization. << Less
-
Molecular cloning and characterization of the gene encoding cholinephosphate cytidylyltransferase in Saccharomyces cerevisiae.
Tsukagoshi Y., Nikawa J., Yamashita S.
1. The structural gene for cholinephosphate cytidylyltransferase (CCT) was isolated from a Saccharomyces cerevisiae genomic library by means of complementation in a mutant of the yeast defective in the enzyme. The cloned DNA restored both the growth and cholinephosphate cytidylyltransferase activi ... >> More
1. The structural gene for cholinephosphate cytidylyltransferase (CCT) was isolated from a Saccharomyces cerevisiae genomic library by means of complementation in a mutant of the yeast defective in the enzyme. The cloned DNA restored both the growth and cholinephosphate cytidylyltransferase activity of the mutant. Whereas the enzyme of the mutant was thermolabile, the enzyme produced by the transformant was indistinguishable in heat stability from that produced by the wild type. 2. Strains carrying a multicopy recombinant plasmid overproduced cholinephosphate cytidylyltransferase. The overproduction of the enzyme brought about an increase in the synthesis of CDPcholine in the transformant, but there was no increase in the overall rate of phosphatidylcholine synthesis. 3. The cloned DNA was subcloned into a 2.5-kb DNA fragment. The nucleotide sequence which contained CCT was determined by the dideoxy chain-termination method. The sequence contained an open reading frame capable of encoding a protein of 424 amino acid residues with a calculated relative molecular mass of 49,379.31. Northern blot analysis showed that this DNA segment is transcribed in yeast cells and the length of the transcript is consistent with the putative translation product. 4. Hydropathy analysis according to Kyte and Doolittle indicated that the primary translation product contains extended hydrophilic stretches in its N- and C-terminal regions. 5. The primary translation product contains a region showing local sequence homology with nucleotidyl-transfer enzymes such as DNA polymerase (Escherichia coli), CDPdiacylglycerol pyrophosphatase (E. coli), 3-deoxy-manno-octulosonate cytidylyltransferase (E. coli) and DNA ligase (T4 phage), suggesting that these five enzymes are evolutionarily related. Statistically significant sequence homology was also noted between the human c-fos gene product and the enzyme. << Less
-
Crystal structure of a mammalian CTP: phosphocholine cytidylyltransferase catalytic domain reveals novel active site residues within a highly conserved nucleotidyltransferase fold.
Lee J., Johnson J., Ding Z., Paetzel M., Cornell R.B.
CTP:phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in the synthesis of phosphatidylcholine, the most abundant phospholipid in eukaryotic cell membranes. The CCT-catalyzed transfer of a cytidylyl group from CTP to phosphocholine to form CDP-choline is regulated by a membrane ... >> More
CTP:phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in the synthesis of phosphatidylcholine, the most abundant phospholipid in eukaryotic cell membranes. The CCT-catalyzed transfer of a cytidylyl group from CTP to phosphocholine to form CDP-choline is regulated by a membrane lipid-dependent mechanism imparted by its C-terminal membrane binding domain. We present the first analysis of a crystal structure of a eukaryotic CCT. A deletion construct of rat CCTalpha spanning residues 1-236 (CCT236) lacks the regulatory domain and as a result displays constitutive activity. The 2.2-A structure reveals a CCT236 homodimer in complex with the reaction product, CDP-choline. Each chain is composed of a complete catalytic domain with an intimately associated N-terminal extension, which together with the catalytic domain contributes to the dimer interface. Although the CCT236 structure reveals elements involved in binding cytidine that are conserved with other members of the cytidylyltransferase superfamily, it also features nonconserved active site residues, His-168 and Tyr-173, that make key interactions with the beta-phosphate of CDP-choline. Mutagenesis and kinetic analyses confirmed their role in phosphocholine binding and catalysis. These results demonstrate structural and mechanistic differences in a broadly conserved protein fold across the cytidylyltransferase family. Comparison of the CCT236 structure with those of other nucleotidyltransferases provides evidence for substrate-induced active site loop movements and a disorder-to-order transition of a loop element in the catalytic mechanism. << Less