Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline a penicillin Identifier CHEBI:51356 Charge -1 Formula C9H10N2O4SR SMILEShelp_outline [H][C@]12SC(C)(C)[C@@H](N1C(=O)[C@H]2NC([*])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 6-aminopenicillanate Identifier CHEBI:57869 Charge 0 Formula C8H12N2O3S InChIKeyhelp_outline NGHVIOIJCVXTGV-ALEPSDHESA-N SMILEShelp_outline [H][C@]12SC(C)(C)[C@@H](N1C(=O)[C@H]2[NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a carboxylate Identifier CHEBI:29067 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 5,907 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18693 | RHEA:18694 | RHEA:18695 | RHEA:18696 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Crystal structures of penicillin acylase enzyme-substrate complexes: structural insights into the catalytic mechanism.
McVey C.E., Walsh M.A., Dodson G.G., Wilson K.S., Brannigan J.A.
The crystal structure of penicillin G acylase from Escherichia coli has been determined to a resolution of 1.3 A from a crystal form grown in the presence of ethylene glycol. To study aspects of the substrate specificity and catalytic mechanism of this key biotechnological enzyme, mutants were mad ... >> More
The crystal structure of penicillin G acylase from Escherichia coli has been determined to a resolution of 1.3 A from a crystal form grown in the presence of ethylene glycol. To study aspects of the substrate specificity and catalytic mechanism of this key biotechnological enzyme, mutants were made to generate inactive protein useful for producing enzyme-substrate complexes. Owing to the intimate association of enzyme activity and precursor processing in this protein family (the Ntn hydrolases), most attempts to alter active-site residues lead to processing defects. Mutation of the invariant residue Arg B263 results in the accumulation of a protein precursor form. However, the mutation of Asn B241, a residue implicated in stabilisation of the tetrahedral intermediate during catalysis, inactivates the enzyme but does not prevent autocatalytic processing or the ability to bind substrates. The crystal structure of the Asn B241 Ala oxyanion hole mutant enzyme has been determined in its native form and in complex with penicillin G and penicillin G sulphoxide. We show that Asn B241 has an important role in maintaining the active site geometry and in productive substrate binding, hence the structure of the mutant protein is a poor model for the Michaelis complex. For this reason, we subsequently solved the structure of the wild-type protein in complex with the slowly processed substrate penicillin G sulphoxide. Analysis of this structure suggests that the reaction mechanism proceeds via direct nucleophilic attack of Ser B1 on the scissile amide and not as previously proposed via a tightly H-bonded water molecule acting as a "virtual" base. << Less
-
Penicillin V acylase crystal structure reveals new Ntn-hydrolase family members.
Suresh C.G., Pundle A.V., SivaRaman H., Rao K.N., Brannigan J.A., McVey C.E., Verma C.S., Dauter Z., Dodson E.J., Dodson G.G.
-
Structural and kinetic studies on ligand binding in wild-type and active-site mutants of penicillin acylase.
Alkema W.B., Hensgens C.M., Snijder H.J., Keizer E., Dijkstra B.W., Janssen D.B.
Penicillin acylase catalyses the condensation of Calpha-substituted phenylacetic acids with beta-lactam nucleophiles, producing semi-synthetic beta-lactam antibiotics. For efficient synthesis a low affinity for phenylacetic acid and a high affinity for Calpha-substituted phenylacetic acid derivati ... >> More
Penicillin acylase catalyses the condensation of Calpha-substituted phenylacetic acids with beta-lactam nucleophiles, producing semi-synthetic beta-lactam antibiotics. For efficient synthesis a low affinity for phenylacetic acid and a high affinity for Calpha-substituted phenylacetic acid derivatives is desirable. We made three active site mutants, alphaF146Y, betaF24A and alphaF146Y/betaF24A, which all had a 2-to 10-fold higher affinity for Calpha-substituted compounds than wild-type enzyme. In addition, betaF24A had a 20-fold reduced affinity for phenylacetic acid. The molecular basis of the improved properties was investigated by X-ray crystallography. These studies showed that the higher affinity of alphaF146Y for (R)-alpha-methylphenylacetic acid can be explained by van der Waals interactions between alphaY146:OH and the Calpha-substituent. The betaF24A mutation causes an opening of the phenylacetic acid binding site. Only (R)-alpha-methylphenylacetic acid, but not phenylacetic acid, induces a conformation with the ligand tightly bound, explaining the weak binding of phenylacetic acid. A comparison of the betaF24A structure with other open conformations of penicillin acylase showed that betaF24 has a fixed position, whereas alphaF146 acts as a flexible lid on the binding site and reorients its position to achieve optimal substrate binding. << Less
-
Penicillin acylase has a single-amino-acid catalytic centre.
Duggleby H.J., Tolley S.P., Hill C.P., Dodson E.J., Dodson G., Moody P.C.E.
Penicillin acylase (penicillin amidohydrolase, EC 3.5.1.11) is widely distributed among microorganisms, including bacteria, yeast and filamentous fungi. It is used on an industrial scale for the production of 6-aminopenicillanic acid, the starting material for the synthesis of semi-synthetic penic ... >> More
Penicillin acylase (penicillin amidohydrolase, EC 3.5.1.11) is widely distributed among microorganisms, including bacteria, yeast and filamentous fungi. It is used on an industrial scale for the production of 6-aminopenicillanic acid, the starting material for the synthesis of semi-synthetic penicillins. Its in vivo role remains unclear, however, and the observation that expression of the Escherichia coli enzyme in vivo is regulated by both temperature and phenylacetic acid has prompted speculation that the enzyme could be involved in the assimilation of aromatic compounds as carbon sources in the organism's free-living mode. The mature E. coli enzyme is a periplasmic 80K heterodimer of A and B chains (209 and 566 amino acids, respectively) synthesized as a single cytoplasmic precursor containing a 26-amino-acid signal sequence to direct export to the cytoplasm and a 54-amino-acid spacer between the A and B chains which may influence the final folding of the chains. The N-terminal serine of the B chain reacts with phenylmethylsulphonyl fluoride, which is consistent with a catalytic role for the serine hydroxyl group. Modifying this serine to a cysteine inactivates the enzyme, whereas threonine, arginine or glycine substitution prevents in vivo processing of the enzyme, indicating that this must be an important recognition site for cleavage. Here we report the crystal structure of penicillin acylase at 1.9 A resolution. Our analysis shows that the environment of the catalytically active N-terminal serine of the B chain contains no adjacent histidine equivalent to that found in the serine proteases. The nearest base to the hydroxyl of this serine is its own alpha-amino group, which may act by a new mechanism to endow the enzyme with its catalytic properties. << Less