Enzymes
UniProtKB help_outline | 857 proteins |
Enzyme classes help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline D-galactonate Identifier CHEBI:12931 Charge -1 Formula C6H11O7 InChIKeyhelp_outline RGHNJXZEOKUKBD-MGCNEYSASA-M SMILEShelp_outline OC[C@@H](O)[C@H](O)[C@H](O)[C@@H](O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-dehydro-3-deoxy-D-galactonate Identifier CHEBI:57989 Charge -1 Formula C6H9O6 InChIKeyhelp_outline WPAMZTWLKIDIOP-NQXXGFSBSA-M SMILEShelp_outline OC[C@@H](O)[C@H](O)CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18649 | RHEA:18650 | RHEA:18651 | RHEA:18652 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
The nonphosphorylative Entner-Doudoroff pathway in the thermoacidophilic euryarchaeon Picrophilus torridus involves a novel 2-keto-3-deoxygluconate-specific aldolase.
Reher M., Fuhrer T., Bott M., Schonheit P.
The pathway of glucose degradation in the thermoacidophilic euryarchaeon Picrophilus torridus has been studied by in vivo labeling experiments and enzyme analyses. After growth of P. torridus in the presence of [1-(13)C]- and [3-(13)C]glucose, the label was found only in the C-1 and C-3 positions, ... >> More
The pathway of glucose degradation in the thermoacidophilic euryarchaeon Picrophilus torridus has been studied by in vivo labeling experiments and enzyme analyses. After growth of P. torridus in the presence of [1-(13)C]- and [3-(13)C]glucose, the label was found only in the C-1 and C-3 positions, respectively, of the proteinogenic amino acid alanine, indicating the exclusive operation of an Entner-Doudoroff (ED)-type pathway in vivo. Cell extracts of P. torridus contained all enzyme activities of a nonphosphorylative ED pathway, which were not induced by glucose. Two key enzymes, gluconate dehydratase (GAD) and a novel 2-keto-3-deoxygluconate (KDG)-specific aldolase (KDGA), were characterized. GAD is a homooctamer of 44-kDa subunits, encoded by Pto0485. KDG aldolase, KDGA, is a homotetramer of 32-kDa subunits. This enzyme was highly specific for KDG with up to 2,000-fold-higher catalytic efficiency compared to 2-keto-3-deoxy-6-phosphogluconate (KDPG) and thus differs from the bifunctional KDG/KDPG aldolase, KD(P)GA of crenarchaea catalyzing the conversion of both KDG and KDPG with a preference for KDPG. The KDGA-encoding gene, kdgA, was identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) as Pto1279, and the correct translation start codon, an ATG 24 bp upstream of the annotated start codon of Pto1279, was determined by N-terminal amino acid analysis. The kdgA gene was functionally overexpressed in Escherichia coli. Phylogenetic analysis revealed that KDGA is only distantly related to KD(P)GA, both enzymes forming separate families within the dihydrodipicolinate synthase superfamily. From the data we conclude that P. torridus degrades glucose via a strictly nonphosphorylative ED pathway with a novel KDG-specific aldolase, thus excluding the operation of the branched ED pathway involving a bifunctional KD(P)GA as a key enzyme. << Less
J. Bacteriol. 192:964-974(2010) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Gluconate dehydratase from the promiscuous Entner-Doudoroff pathway in Sulfolobus solfataricus.
Lamble H.J., Milburn C.C., Taylor G.L., Hough D.W., Danson M.J.
An investigation has been carried out into gluconate dehydratase from the hyperthermophilic Archaeon Sulfolobus solfataricus. The enzyme has been purified from cell extracts of the organism and found to be responsible for both gluconate and galactonate dehydratase activities. It was shown to be a ... >> More
An investigation has been carried out into gluconate dehydratase from the hyperthermophilic Archaeon Sulfolobus solfataricus. The enzyme has been purified from cell extracts of the organism and found to be responsible for both gluconate and galactonate dehydratase activities. It was shown to be a 45 kDa monomer with a half-life of 41 min at 95 degrees C and it exhibited similar catalytic efficiency with both substrates. Taken alongside the recent work on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase, this report clearly demonstrates that the entire non-phosphorylative Entner-Doudoroff pathway of S. solfataricus is promiscuous for the metabolism of both glucose and galactose. << Less
-
The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation.
Ahmed H., Ettema T.J., Tjaden B., Geerling A.C., van der Oost J., Siebers B.
Biochemical studies have suggested that, in hyperthermophilic archaea, the metabolic conversion of glucose via the ED (Entner-Doudoroff) pathway generally proceeds via a non-phosphorylative variant. A key enzyme of the non-phosphorylating ED pathway of Sulfolobus solfataricus, KDG (2-keto-3-deoxyg ... >> More
Biochemical studies have suggested that, in hyperthermophilic archaea, the metabolic conversion of glucose via the ED (Entner-Doudoroff) pathway generally proceeds via a non-phosphorylative variant. A key enzyme of the non-phosphorylating ED pathway of Sulfolobus solfataricus, KDG (2-keto-3-deoxygluconate) aldolase, has been cloned and characterized previously. In the present study, a comparative genomics analysis is described that reveals conserved ED gene clusters in both Thermoproteus tenax and S. solfataricus. The corresponding ED proteins from both archaea have been expressed in Escherichia coli and their specificity has been identified, revealing: (i) a novel type of gluconate dehydratase (gad gene), (ii) a bifunctional 2-keto-3-deoxy-(6-phospho)-gluconate aldolase (kdgA gene), (iii) a 2-keto-3-deoxygluconate kinase (kdgK gene) and, in S. solfataricus, (iv) a GAPN (non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase; gapN gene). Extensive in vivo and in vitro enzymatic analyses indicate the operation of both the semi-phosphorylative and the non-phosphorylative ED pathway in T. tenax and S. solfataricus. The existence of this branched ED pathway is yet another example of the versatility and flexibility of the central carbohydrate metabolic pathways in the archaeal domain. << Less
Biochem. J. 390:529-540(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.