Reaction participants Show >> << Hide
- Name help_outline hydrogencarbonate Identifier CHEBI:17544 (Beilstein: 3903504; CAS: 71-52-3) help_outline Charge -1 Formula CHO3 InChIKeyhelp_outline BVKZGUZCCUSVTD-UHFFFAOYSA-M SMILEShelp_outline OC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 59 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamine Identifier CHEBI:58359 Charge 0 Formula C5H10N2O3 InChIKeyhelp_outline ZDXPYRJPNDTMRX-VKHMYHEASA-N SMILEShelp_outline NC(=O)CC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 77 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline carbamoyl phosphate Identifier CHEBI:58228 (CAS: 63082-13-3) help_outline Charge -2 Formula CH2NO5P InChIKeyhelp_outline FFQKYPRQEYGKAF-UHFFFAOYSA-L SMILEShelp_outline NC(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamate Identifier CHEBI:29985 (CAS: 11070-68-1) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-VKHMYHEASA-M SMILEShelp_outline [NH3+][C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 244 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18633 | RHEA:18634 | RHEA:18635 | RHEA:18636 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Publications
-
The amidotransferase family of enzymes: molecular machines for the production and delivery of ammonia.
Raushel F.M., Thoden J.B., Holden H.M.
The amidotransferase family of enzymes utilizes the ammonia derived from the hydrolysis of glutamine for a subsequent chemical reaction catalyzed by the same enzyme. The ammonia intermediate does not dissociate into solution during the chemical transformations. A well-characterized example of the ... >> More
The amidotransferase family of enzymes utilizes the ammonia derived from the hydrolysis of glutamine for a subsequent chemical reaction catalyzed by the same enzyme. The ammonia intermediate does not dissociate into solution during the chemical transformations. A well-characterized example of the structure and mechanism displayed by this class of enzymes is provided by carbamoyl phosphate synthetase (CPS). Carbamoyl phosphate synthetase is isolated from Escherichia coli as a heterodimeric protein. The smaller of the two subunits catalyzes the hydrolysis of glutamine to glutamate and ammonia. The larger subunit catalyzes the formation of carbamoyl phosphate using 2 mol of ATP, bicarbonate, and ammonia. Kinetic investigations have led to a proposed chemical mechanism for this enzyme that requires carboxy phosphate, ammonia, and carbamate as kinetically competent reaction intermediates. The three-dimensional X-ray crystal structure of CPS has localized the positions of three active sites. The nucleotide binding site within the N-terminal half of the large subunit is required for the phosphorylation of bicarbonate and subsequent formation of carbamate. The nucleotide binding site within the C-terminal domain of the large subunit catalyzes the phosphorylation of carbamate to the final product, carbamoyl phosphate. The three active sites within the heterodimeric protein are separated from one another by about 45 A. The ammonia produced within the active site of the small subunit is the substrate for reaction with the carboxy phosphate intermediate that is formed in the active site found within the N-terminal half of the large subunit of CPS. Since the ammonia does not dissociate from the protein prior to its reaction with carboxy phosphate, this intermediate must therefore diffuse through a molecular tunnel that connects these two sites with one another. Similarly, the carbamate intermediate, initially formed at the active site within the N-terminal half of the large subunit, is the substrate for phosphorylation by the ATP bound to the active site located in the C-terminal half of the large subunit. A molecular passageway has been identified by crystallographic methods that apparently facilitates diffusion between these two active sites within the large subunit of CPS. Synchronization of the chemical transformations is controlled by structural perturbations among the three active sites. Molecular tunnels between distant active sites have also been identified in tryptophan synthase and glutamine phosphoribosyl pyrophosphate amidotransferase and are likely architectural features in an expanding list of enzymes. << Less
Biochemistry 38:7891-7899(1999) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Carbamoyl phosphate synthetase: a tunnel runs through it.
Holden H.M., Thoden J.B., Raushel F.M.
The direct transfer of metabolites from one protein to another in a biochemical pathway or between one active site and another within a single enzyme has been described as substrate channeling. The first structural visualization of such a phenomenon was provided by the X-ray crystallographic analy ... >> More
The direct transfer of metabolites from one protein to another in a biochemical pathway or between one active site and another within a single enzyme has been described as substrate channeling. The first structural visualization of such a phenomenon was provided by the X-ray crystallographic analysis of tryptophan synthase, in which a tunnel of approximately 25 A in length was observed. The recently determined three-dimensional structure of carbamoyl phosphate synthetase sets a new long distance record in that the three active sites are separated by nearly 100 A. << Less
Curr Opin Struct Biol 8:679-685(1998) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Carbamoyl phosphate synthetase: a crooked path from substrates to products.
Raushel F.M., Thoden J.B., Reinhart G.D., Holden H.M.
The formation of carbamoyl phosphate is catalyzed by a single enzyme using glutamine, bicarbonate and two molecules of ATP via a reaction mechanism that requires a minimum of four consecutive reactions and three unstable intermediates. The recently determined X-ray crystal structure of carbamoyl p ... >> More
The formation of carbamoyl phosphate is catalyzed by a single enzyme using glutamine, bicarbonate and two molecules of ATP via a reaction mechanism that requires a minimum of four consecutive reactions and three unstable intermediates. The recently determined X-ray crystal structure of carbamoyl phosphate synthetase has revealed the location of three separate active sites connected by two molecular tunnels that run through the interior of the protein. It has been demonstrated that the amidotransferase domain within the small subunit of the enzyme from Escherichia coli hydrolyzes glutamine to ammonia via a thioester intermediate with Cys269. The ammonia migrates through the interior of the protein, where it reacts with carboxy phosphate to produce the carbamate intermediate. The carboxy phosphate intermediate is formed by the phosphorylation of bicarbonate by ATP at a site contained within the amino-terminal half of the large subunit. The carbamate intermediate is transported through the interior of the protein to a second site within the carboxy-terminal half of the large subunit, where it is phosphorylated by another ATP to yield the final product, carbamoyl phosphate. The entire journey from substrate to product covers a distance of nearly 100 A. << Less
Curr Opin Chem Biol 2:624-632(1998) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Carbamoyl-phosphate synthetase. Creation of an escape route for ammonia.
Thoden J.B., Huang X., Raushel F.M., Holden H.M.
Carbamoyl-phosphate synthetase catalyzes the production of carbamoyl phosphate through a reaction mechanism requiring one molecule of bicarbonate, two molecules of MgATP, and one molecule of glutamine. The enzyme from Escherichia coli is composed of two polypeptide chains. The smaller of these bel ... >> More
Carbamoyl-phosphate synthetase catalyzes the production of carbamoyl phosphate through a reaction mechanism requiring one molecule of bicarbonate, two molecules of MgATP, and one molecule of glutamine. The enzyme from Escherichia coli is composed of two polypeptide chains. The smaller of these belongs to the Class I amidotransferase superfamily and contains all of the necessary amino acid side chains required for the hydrolysis of glutamine to glutamate and ammonia. Two homologous domains from the larger subunit adopt conformations that are characteristic for members of the ATP-grasp superfamily. Each of these ATP-grasp domains contains an active site responsible for binding one molecule of MgATP. High resolution x-ray crystallographic analyses have shown that, remarkably, the three active sites in the E. coli enzyme are connected by a molecular tunnel of approximately 100 A in total length. Here we describe the high resolution x-ray crystallographic structure of the G359F (small subunit) mutant protein of carbamoyl phosphate synthetase. This residue was initially targeted for study because it resides within the interior wall of the molecular tunnel leading from the active site of the small subunit to the first active site of the large subunit. It was anticipated that a mutation to the larger residue would "clog" the ammonia tunnel and impede the delivery of ammonia from its site of production to the site of utilization. In fact, the G359F substitution resulted in a complete change in the conformation of the loop delineated by Glu-355 to Ala-364, thereby providing an "escape" route for the ammonia intermediate directly to the bulk solvent. The substitution also effected the disposition of several key catalytic amino acid side chains in the small subunit active site. << Less
J Biol Chem 277:39722-39727(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Evidence for an activated form of carbon dioxide in the reaction catalyzed by Escherichia coli carbamyl phosphate synthetase.
Anderson P.M., Meister A.
-
Purification and properties of a bacterial carbamyl phosphate synthetase.
Kalman S.M., Duffield P.H., Brzozowski T.
-
Glutamine-dependent carbamyl phosphate synthetase. Properties and distribution in normal and neoplastic rat tissues.
Yip M.C., Knox W.E.
-
Role of conserved residues within the carboxy phosphate domain of carbamoyl phosphate synthetase.
Stapleton M.A., Javid-Majd F., Harmon M.F., Hanks B.A., Grahmann J.L., Mullins L.S., Raushel F.M.
Carbamoyl phosphate synthetase (CPS) catalyzes the formation of carbamoyl phosphate from glutamine, bicarbonate, and 2 mol of MgATP. The heterodimeric protein is composed of a small amidotransferase subunit and a larger synthetase subunit. The synthetase subunit contains a large tandem repeat for ... >> More
Carbamoyl phosphate synthetase (CPS) catalyzes the formation of carbamoyl phosphate from glutamine, bicarbonate, and 2 mol of MgATP. The heterodimeric protein is composed of a small amidotransferase subunit and a larger synthetase subunit. The synthetase subunit contains a large tandem repeat for each of the nucleotides used in the overall synthesis of carbamoyl phosphate. A working model for the three-dimensional fold of the carboxy phosphate domain of CPS was constructed on the basis of amino acid sequence alignments and the X-ray crystal structure coordinates for biotin carboxylase and D-alanine:D-alanine ligase. This model was used to select ten residues within the carboxy phosphate domain of CPS for modification and subsequent characterization of the kinetic constants for the mutant proteins. Residues R82, R129, R169, D207, E215, N283, and Q285 were changed to alanine residues; residues E299 and R303 to glutamine; and residue N301 to aspartate. No significant changes in the catalytic constants were observed upon mutation of either R82 or D207, and thus these residues appear to be nonessential for binding and/or catalytic activity. The Michaelis constant for ATP was most affected by modification of residues R129, R169, Q285, and N301. The binding of bicarbonate was most affected by the mutagenesis of residues E215, E299, N301, and R303. The mutation of residues E215, N283, E299, N301, and R303 resulted in proteins which were unable to synthesize carbamoyl phosphate at a significant rate. All of the mutations, with the exception of the N301D mutant, primarily affected the enzyme by altering the step for the phosphorylation of bicarbonate. However, mutation of N301 to aspartic acid also disrupted the catalytic step involved in the phosphorylation of carbamate. These results are consistent with a role for the N-terminal half of the synthetase subunit of CPS that is primarily directed at the initial phosphorylation of bicarbonate by the first ATP utilized in the overall synthesis of carbamoyl phosphate. The active site structure appears to be very similar to the ones previously determined for D-alanine:D-alanine ligase and biotin carboxylase. << Less
Comments
Multi-step reaction: RHEA:15889 + RHEA:46744 + RHEA:46748 + RHEA:30755