Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline salicylaldehyde Identifier CHEBI:16008 (CAS: 90-02-8) help_outline Charge 0 Formula C7H6O2 InChIKeyhelp_outline SMQUZDBALVYZAC-UHFFFAOYSA-N SMILEShelp_outline [H]C(=O)c1ccccc1O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline salicylate Identifier CHEBI:30762 (CAS: 63-36-5) help_outline Charge -1 Formula C7H5O3 InChIKeyhelp_outline YGSDEFSMJLZEOE-UHFFFAOYSA-M SMILEShelp_outline Oc1ccccc1C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18537 | RHEA:18538 | RHEA:18539 | RHEA:18540 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions.
Eaton R.W., Chapman P.J.
The reactions involved in the bacterial metabolism of naphthalene to salicylate have been reinvestigated by using recombinant bacteria carrying genes cloned from plasmid NAH7. When intact cells of Pseudomonas aeruginosa PAO1 carrying DNA fragments encoding the first three enzymes of the pathway we ... >> More
The reactions involved in the bacterial metabolism of naphthalene to salicylate have been reinvestigated by using recombinant bacteria carrying genes cloned from plasmid NAH7. When intact cells of Pseudomonas aeruginosa PAO1 carrying DNA fragments encoding the first three enzymes of the pathway were incubated with naphthalene, they formed products of the dioxygenase-catalyzed ring cleavage of 1,2-dihydroxynaphthalene. These products were separated by chromatography on Sephadex G-25 and were identified by 1H and 13C nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry as 2-hydroxychromene-2-carboxylate (HCCA) and trans-o-hydroxybenzylidenepyruvate (tHBPA). HCCA was detected as the first reaction product in these incubation mixtures by its characteristic UV spectrum, which slowly changed to a spectrum indicative of an equilibrium mixture of HCCA and tHBPA. Isomerization of either purified product occurred slowly and spontaneously to give an equilibrium mixture of essentially the same composition. tHBPA is also formed from HCCA by the action of an isomerase enzyme encoded by plasmid NAH7. The gene encoding this enzyme, nahD, was cloned on a 1.95-kb KpnI-BglII fragment. Extracts of Escherichia coli JM109 carrying this fragment catalyzed the rapid equilibration of HCCA and tHBPA. Metabolism of tHBPA to salicylaldehyde by hydration and aldol cleavage is catalyzed by a single enzyme encoded by a 1-kb MluI-StuI restriction fragment. A mechanism for the hydratase-aldolase-catalyzed reaction is proposed. The salicylaldehyde dehydrogenase gene, nahF, was cloned on a 2.75-kb BamHI fragment which also carries the naphthalene dihydrodiol dehydrogenase gene, nahB. On the basis of the identification of the enzymes encoded by various clones, the gene order for the nah operon was shown to be p, A, B, F, C, E, D. << Less
-
Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway.
Denome S.A., Stanley D.C., Olson E.S., Young K.D.
From a soil isolate, Pseudomonas strain C18, we cloned and sequenced a 9.8-kb DNA fragment that encodes dibenzothiophene-degrading enzymes. Nine open reading frames were identified and designated doxABDEFGHIJ. Collectively, we refer to these genes as the DOX pathway. At the nucleotide level, doxAB ... >> More
From a soil isolate, Pseudomonas strain C18, we cloned and sequenced a 9.8-kb DNA fragment that encodes dibenzothiophene-degrading enzymes. Nine open reading frames were identified and designated doxABDEFGHIJ. Collectively, we refer to these genes as the DOX pathway. At the nucleotide level, doxABD are identical to the ndoABC genes that encode naphthalene dioxygenase of Pseudomonas putida. The DoxG protein is 97% identical to NahC (1,2-dihydroxynaphthalene dioxygenase) of P. putida. DoxE has 37% identity with cis-toluene dihydrodiol dehydrogenase. DoxF is similar to the aldehyde dehydrogenases of many organisms. The predicted DoxHIJ proteins have no obvious sequence similarities to known proteins. Gas chromatography with a flame ionization detector and mass spectroscopy confirmed that the DOX proteins convert naphthalene to salicylate and converting phenanthrene to 1-hydroxy-2-naphthoic acid. doxI mutants convert naphthalene to trans-o-hydroxybenzylidenepyruvate, indicating that the DoxI protein is similar to NahE (trans-o-hydroxybenzylidenepyruvate hydratase-aldolase). Comparison of the DOX sequence with restriction maps of cloned naphthalene catabolic pathway (NAH) genes revealed many conserved restriction sites. The DOX gene arrangement is identical to that proposed for NAH, except that the NAH equivalent of doxH has not been recognized. DoxH may be involved in the conversion of 2-hydroxy-4-(2'-oxo-3,5-cyclohexadienyl)-buta-2,4-dienoat e to cis-o-hydroxybenzylidenepyruvate. doxJ encodes an enzyme similar to NahD (isomerase). Our findings indicate that a single genetic pathway controls the metabolism of dibenzothiophene, naphthalene, and phenanthrene in strain C18 and that the DOX sequence encodes a complete upper naphthalene catabolic pathway similar to NAH. << Less
J. Bacteriol. 175:6890-6901(1993) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.