Enzymes
UniProtKB help_outline | 3,301 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 352 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline chloramphenicol Identifier CHEBI:17698 (Beilstein: 2225532; CAS: 56-75-7) help_outline Charge 0 Formula C11H12Cl2N2O5 InChIKeyhelp_outline WIIZWVCIJKGZOK-RKDXNWHRSA-N SMILEShelp_outline C1=C([C@H]([C@H](NC(C(Cl)Cl)=O)CO)O)C=CC(=C1)[N+]([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline chloramphenicol 3-acetate Identifier CHEBI:16730 Charge 0 Formula C13H14Cl2N2O6 InChIKeyhelp_outline VVOIFRARHIZCJD-GHMZBOCLSA-N SMILEShelp_outline CC(=O)OC[C@@H](NC(=O)C(Cl)Cl)[C@H](O)c1ccc(cc1)[N+]([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18421 | RHEA:18422 | RHEA:18423 | RHEA:18424 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Structure of the hexapeptide xenobiotic acetyltransferase from Pseudomonas aeruginosa.
Beaman T.W., Sugantino M., Roderick S.L.
The crystal structure of the xenobiotic acetyltransferase from Pseudomonas aeruginosa PA103 (PaXAT) has been determined, as well as that of its complex with the substrate chloramphenicol and the cofactor analogue desulfo-coenzyme A. PaXAT is a member of the large hexapeptide acyltransferase family ... >> More
The crystal structure of the xenobiotic acetyltransferase from Pseudomonas aeruginosa PA103 (PaXAT) has been determined, as well as that of its complex with the substrate chloramphenicol and the cofactor analogue desulfo-coenzyme A. PaXAT is a member of the large hexapeptide acyltransferase family of enzymes that display tandem repeated copies of a six-residue hexapeptide repeat sequence motif encoding a left-handed parallel beta helix (L betaH) structural domain. The xenobiotic acetyltransferase class of hexapeptide acyltransferases is composed of microbial enzymes that utilize acetyl-CoA to acylate a variety of hydroxyl-bearing acceptors. The active site of trimeric PaXAT is a short tunnel into which chloramphenicol and the cofactor analogue desulfo-CoA project from opposite ends. This tunnel is formed by the flat parallel beta sheets of two separate L betaH domains and an extended 39-residue loop. His 79 of the extended loop forms hydrogen bonds from its imidazole NE2 atom to the 3-hydroxyl group of chloramphenicol and from its ND1 group to the peptide oxygen of Thr 86. The interactions of this histidine residue are similar to those found in the structurally unrelated type III chloramphenicol acetyltransferase and suggest that His 79 of PaXAT may be similarly positioned and tautomerically stabilized to serve as a general base catalyst. << Less