Enzymes
UniProtKB help_outline | 5,467 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline dihydroxyacetone Identifier CHEBI:16016 (CAS: 96-26-4) help_outline Charge 0 Formula C3H6O3 InChIKeyhelp_outline RXKJFZQQPQGTFL-UHFFFAOYSA-N SMILEShelp_outline C(CO)(CO)=O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphoenolpyruvate Identifier CHEBI:58702 (Beilstein: 3951723) help_outline Charge -3 Formula C3H2O6P InChIKeyhelp_outline DTBNBXWJWCWCIK-UHFFFAOYSA-K SMILEShelp_outline [O-]C(=O)C(=C)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 41 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dihydroxyacetone phosphate Identifier CHEBI:57642 (Beilstein: 4428349) help_outline Charge -2 Formula C3H5O6P InChIKeyhelp_outline GNGACRATGGDKBX-UHFFFAOYSA-L SMILEShelp_outline C(CO)(COP([O-])(=O)[O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 41 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18381 | RHEA:18382 | RHEA:18383 | RHEA:18384 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
An inducible phosphoenolpyruvate: dihydroxyacetone phosphotransferase system in Escherichia coli.
Jin R.Z., Lin E.C.
A phosphoenolpyruvate: dihydroxyacetone phosphotransferase was induced in Escherichia coli grown on dihydroxyacetone as sole carbon source or in its presence. This is the first example of a triose which can be acted upon by the membrane complex to provide a central intermediate in glycolysis. The ... >> More
A phosphoenolpyruvate: dihydroxyacetone phosphotransferase was induced in Escherichia coli grown on dihydroxyacetone as sole carbon source or in its presence. This is the first example of a triose which can be acted upon by the membrane complex to provide a central intermediate in glycolysis. The presence of this system explains the ability of a mutant, in which the ATP-dependent glycerol kinase is genetically replaced by a glycerol: NAD 2-oxidoreductase, to grow on glycerol. << Less
-
Novel listerial glycerol dehydrogenase- and phosphoenolpyruvate-dependent dihydroxyacetone kinase system connected to the pentose phosphate pathway.
Monniot C., Zebre A.C., Ake F.M., Deutscher J., Milohanic E.
Several bacteria use glycerol dehydrogenase to transform glycerol into dihydroxyacetone (Dha). Dha is subsequently converted into Dha phosphate (Dha-P) by an ATP- or phosphoenolpyruvate (PEP)-dependent Dha kinase. Listeria innocua possesses two potential PEP-dependent Dha kinases. One is encoded b ... >> More
Several bacteria use glycerol dehydrogenase to transform glycerol into dihydroxyacetone (Dha). Dha is subsequently converted into Dha phosphate (Dha-P) by an ATP- or phosphoenolpyruvate (PEP)-dependent Dha kinase. Listeria innocua possesses two potential PEP-dependent Dha kinases. One is encoded by 3 of the 11 genes forming the glycerol (gol) operon. This operon also contains golD (lin0362), which codes for a new type of Dha-forming NAD(+)-dependent glycerol dehydrogenase. The subsequent metabolism of Dha requires its phosphorylation via the PEP:sugar phosphotransferase system components enzyme I, HPr, and EIIA(Dha)-2 (Lin0369). Pā¼EIIA(Dha)-2 transfers its phosphoryl group to DhaL-2, which phosphorylates Dha bound to DhaK-2. The resulting Dha-P is probably metabolized mainly via the pentose phosphate pathway, because two genes of the gol operon encode proteins resembling transketolases and transaldolases. In addition, purified Lin0363 and Lin0364 exhibit ribose-5-P isomerase (RipB) and triosephosphate isomerase activities, respectively. The latter enzyme converts part of the Dha-P into glyceraldehyde-3-P, which, together with Dha-P, is metabolized via gluconeogenesis to form fructose-6-P. Together with another glyceraldehyde-3-P molecule, the transketolase transforms fructose-6-P into intermediates of the pentose phosphate pathway. The gol operon is preceded by golR, transcribed in the opposite orientation and encoding a DeoR-type repressor. Its inactivation causes the constitutive but glucose-repressible expression of the entire gol operon, including the last gene, encoding a pediocin immunity-like (PedB-like) protein. Its elevated level of synthesis in the golR mutant causes slightly increased immunity against pediocin PA-1 compared to the wild-type strain or a pedB-like deletion mutant. << Less
J. Bacteriol. 194:4972-4982(2012) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.