Reaction participants Show >> << Hide
- Name help_outline 4-hydroxy-2-oxoglutarate Identifier CHEBI:17742 Charge -2 Formula C5H4O6 InChIKeyhelp_outline WXSKVKPSMAHCSG-UHFFFAOYSA-L SMILEShelp_outline OC(CC(=O)C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glyoxylate Identifier CHEBI:36655 (Beilstein: 3903641) help_outline Charge -1 Formula C2HO3 InChIKeyhelp_outline HHLFWLYXYJOTON-UHFFFAOYSA-M SMILEShelp_outline [H]C(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 81 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (Beilstein: 3587721; CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18169 | RHEA:18170 | RHEA:18171 | RHEA:18172 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
Reactome help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Characterization and crystal structure of Escherichia coli KDPGal aldolase.
Walters M.J., Srikannathasan V., McEwan A.R., Naismith J.H., Fierke C.A., Toone E.J.
2-Keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases catalyze an identical reaction differing in substrate specificity in only the configuration of a single stereocenter. However, the proteins show little sequence homology at the amino acid level. Her ... >> More
2-Keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases catalyze an identical reaction differing in substrate specificity in only the configuration of a single stereocenter. However, the proteins show little sequence homology at the amino acid level. Here we investigate the determinants of substrate selectivity of these enzymes. The Escherichia coli KDPGal aldolase gene, cloned into a T7 expression vector and overexpressed in E. coli, catalyzes retro-aldol cleavage of the natural substrate, KDPGal, with values of k(cat)/K(M) and k(cat) of 1.9x10(4)M(-1)s(-1) and 4s(-1), respectively. In the synthetic direction, KDPGal aldolase efficiently catalyzes an aldol addition using a limited number of aldehyde substrates, including d-glyceraldehyde-3-phosphate (natural substrate), d-glyceraldehyde, glycolaldehyde, and 2-pyridinecarboxaldehyde. A preparative scale reaction between 2-pyridinecarboxaldehyde and pyruvate catalyzed by KDPGal aldolase produced the aldol adduct of the R stereochemistry in >99.7% ee, a result complementary to that observed using the related KDPG aldolase. The native crystal structure has been solved to a resolution of 2.4A and displays the same (alpha/beta)(8) topology, as KDPG aldolase. We have also determined a 2.1A structure of a Schiff base complex between the enzyme and its substrate. This model predicts that a single amino acid change, T161 in KDPG aldolase to V154 in KDPGal aldolase, plays an important role in determining the stereochemical course of enzyme catalysis and this prediction was borne out by site-directed mutagenesis studies. However, additional changes in the enzyme sequence are required to prepare an enzyme with both high catalytic efficiency and altered stereochemistry. << Less
Bioorg. Med. Chem. 16:710-720(2008) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Regulation of rat liver 4-hydroxy-2-ketoglutarate aldolase.
Scholtz J.M., Schuster S.M.
The possibility is examined that 4-hydroxy-2-ketoglutarate aldolase (4-hydroxy-2-ketoglutarate glyoxylatelyase, EC 4.1.3.16), the last step in hydroxyproline catabolism is regulated by intermediates of gluconeogenesis. Inhibition of isolated 4-hydoxy-2-ketoglutarate aldolase was examined using dua ... >> More
The possibility is examined that 4-hydroxy-2-ketoglutarate aldolase (4-hydroxy-2-ketoglutarate glyoxylatelyase, EC 4.1.3.16), the last step in hydroxyproline catabolism is regulated by intermediates of gluconeogenesis. Inhibition of isolated 4-hydoxy-2-ketoglutarate aldolase was examined using dual inhibition studies. It was found that the enzyme exhibits synergistic inhibition by oxaloacetate and pyruvate, but only when the substrate concentration is low. At substrate concentrations approaching saturation, the inhibition by the oxaloacetate and pyruvate becomes additive. These results are discussed in terms of possible control of the use of carbon from hydroxyproline breakdown in glucose production. << Less
-
Cloning, sequencing, and expression of the gene encoding 4-hydroxy-4-methyl-2-oxoglutarate aldolase from Pseudomonas ochraceae NGJ1.
Maruyama K., Miwa M., Tsujii N., Nagai T., Tomita N., Harada T., Sobajima H., Sugisaki H.
A DNA fragment that carried the gene (proA) encoding 4-hydroxy-4-methyl-2-oxoglutarate aldolase was cloned from the chromosomal DNA of Pseudomonas ochraceae NGJ1, and the coding region was assigned to the nucleotide sequence based on the N-terminal amino acid sequence of the enzyme purified from t ... >> More
A DNA fragment that carried the gene (proA) encoding 4-hydroxy-4-methyl-2-oxoglutarate aldolase was cloned from the chromosomal DNA of Pseudomonas ochraceae NGJ1, and the coding region was assigned to the nucleotide sequence based on the N-terminal amino acid sequence of the enzyme purified from the organism. The proA gene was 684 bp long, corresponding to a protein of 227 amino acid residues with a calculated molecular mass of 24,067 Da. The genes encoding a putative transporter and a 4-oxalomesaconate hydratase were upstream, and a 3'-truncated gene encoding 2-pyrone-4,6-dicarboxylate lactonase was downstream from the proA gene in the same orientation on the DNA fragment. The proA gene product was overproduced in Escherichia coli and briefly purified to homogeneity from the crude extract by a two-step purification. The molecular and catalytic properties of the gene product were similar to those of the P. ochraceae enzyme. << Less
Biosci. Biotechnol. Biochem. 65:2701-2709(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria.
Riedel T.J., Johnson L.C., Knight J., Hantgan R.R., Holmes R.P., Lowther W.T.
<h4>Background</h4>4-hydroxy-2-oxoglutarate (HOG) aldolase is a unique enzyme in the hydroxyproline degradation pathway catalyzing the cleavage of HOG to pyruvate and glyoxylate. Mutations in this enzyme are believed to be associated with the excessive production of oxalate in primary hyperoxaluri ... >> More
<h4>Background</h4>4-hydroxy-2-oxoglutarate (HOG) aldolase is a unique enzyme in the hydroxyproline degradation pathway catalyzing the cleavage of HOG to pyruvate and glyoxylate. Mutations in this enzyme are believed to be associated with the excessive production of oxalate in primary hyperoxaluria type 3 (PH3), although no experimental data is available to support this hypothesis. Moreover, the identity, oligomeric state, enzymatic activity, and crystal structure of human HOGA have not been experimentally determined.<h4>Methodology/principal findings</h4>In this study human HOGA (hHOGA) was identified by mass spectrometry of the mitochondrial enzyme purified from bovine kidney. hHOGA performs a retro-aldol cleavage reaction reminiscent of the trimeric 2-keto-3-deoxy-6-phosphogluconate aldolases. Sequence comparisons, however, show that HOGA is related to the tetrameric, bacterial dihydrodipicolinate synthases, but the reaction direction is reversed. The 1.97 Å resolution crystal structure of hHOGA bound to pyruvate was determined and enabled the modeling of the HOG-Schiff base intermediate and the identification of active site residues. Kinetic analyses of site-directed mutants support the importance of Lys196 as the nucleophile, Tyr168 and Ser77 as components of a proton relay, and Asn78 and Ser198 as unique residues that facilitate substrate binding.<h4>Conclusions/significance</h4>The biochemical and structural data presented support that hHOGA utilizes a type I aldolase reaction mechanism, but employs novel residue interactions for substrate binding. A mapping of the PH3 mutations identifies potential rearrangements in either the active site or the tetrameric assembly that would likely cause a loss in activity. Altogether, these data establish a foundation to assess mutant forms of hHOGA and how their activity could be pharmacologically restored. << Less
-
Purification and properties of 4-hydroxy-4-methyl-2-oxoglutarate aldolase from Pseudomonas ochraceae grown on phthalate.
Maruyama K.
4-Hydroxy-4-methyl-2-oxoglutarate aldolase [4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase: EC 4.1.3.17] has been purified to homogeneity (about 770-fold purification, yield 11.4%) from Pseudomonas ochraceae grown on phthalate. The enzyme has a molecular weight of 160,000 (gel filtration on Bio- ... >> More
4-Hydroxy-4-methyl-2-oxoglutarate aldolase [4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase: EC 4.1.3.17] has been purified to homogeneity (about 770-fold purification, yield 11.4%) from Pseudomonas ochraceae grown on phthalate. The enzyme has a molecular weight of 160,000 (gel filtration on Bio-Gel A-1.5m), a subunit molecular weight of 26,000 (SDS-PAGE) and an isoelectric point of 5.0 (isoelectric focusing). The enzyme requires divalent metal ions such as Mg2+, Mn2+, Co2+, Zn2+, and Cd2+ for activity. The enzyme actively cleaves 4-carboxy-4-hydroxy-2-oxoadipate, a physiological substrate of the enzyme, to give pyruvate and oxaloacetate, but shows much lower affinity for 4-hydroxy-4-methyl-2-oxoglutarate. 4-Hydroxy-2-oxoglutarate is cleaved at a low rate to pyruvate and glyoxylate. The l-isomers of the substrates are preferentially cleaved rather than the d-isomers as determined polarimetrically. The enzyme reactions are reversible: the equilibrium constants (pH 8.0, 25 C) for the HMG and HG cleavage reactions are about 0.07 and 0.03 M, respectively, whereas no equilibrium is observed with CHA due to oxaloacetate beta-decarboxylase activity associated with the enzyme. The enzyme activity is hardly affected by thiols and thiol reagents. The non-enzymatic cleavage reaction caused by various metal ions has also been studied to examine the mechanistic similarity to the enzymatic reaction. << Less
J. Biochem. 108:327-333(1990) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.