Reaction participants Show >> << Hide
- Name help_outline tetradecanoyl-CoA Identifier CHEBI:57385 Charge -4 Formula C35H58N7O17P3S InChIKeyhelp_outline DUAFKXOFBZQTQE-QSGBVPJFSA-J SMILEShelp_outline CCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 43 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 361 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-oxohexadecanoyl-CoA Identifier CHEBI:57349 Charge -4 Formula C37H60N7O18P3S InChIKeyhelp_outline NQMPLXPCRJOSHL-BBECNAHFSA-J SMILEShelp_outline CCCCCCCCCCCCCC(=O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18161 | RHEA:18162 | RHEA:18163 | RHEA:18164 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Mitochondrial trifunctional protein deficiency. Catalytic heterogeneity of the mutant enzyme in two patients.
Kamijo T., Wanders R.J., Saudubray J.-M., Aoyama T., Komiyama A., Hashimoto T.
We examined the enzyme protein and biosynthesis of human trifunctional protein harboring enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase activity in cultured skin fibroblasts from two patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. The followi ... >> More
We examined the enzyme protein and biosynthesis of human trifunctional protein harboring enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase activity in cultured skin fibroblasts from two patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. The following results were obtained. (a) In cells from patient 1, immunoblot analysis and pulse-chase experiments indicated that the content of trifunctional protein was < 10% of that in control cells, due to a very rapid degradation of protein newly synthesized in the mitochondria. The diminution of trifunctional protein was associated with a decreased activity of enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase, when measured using medium-chain to long-chain substrates. (b) In cells from patient 2, the rate of degradation of newly synthesized trifunctional protein was faster than that in control cells, giving rise to a trifunctional protein amounting to 60% of the control levels. The 3-hydroxy-acyl-CoA dehydrogenase activity with medium-chain to long-chain substrates was decreased drastically, with minor changes in activities of the two other enzymes. These data suggest a subtle abnormality of trifunctional protein in cells from patient 2. Taken together, the results obtained show that in both patients, long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency is caused by an abnormality in the trifunctional protein, even though there is a heterogeneity in both patients. << Less
J. Clin. Invest. 93:1740-1747(1994) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
The mitochondrial long-chain trifunctional enzyme: 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-oxoacyl-CoA thiolase.
Middleton B.
Biochem. Soc. Trans. 22:427-431(1994) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Molecular characterization of mitochondrial trifunctional protein deficiency: formation of the enzyme complex is important for stabilization of both alpha- and beta-subunits.
Ushikubo S., Aoyama T., Kamijo T., Wanders R.J.A., Rinaldo P., Vockley J., Hashimoto T.
Mitochondrial trifunctional protein (TP) is an enzyme complex with three activities: enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase. Studies on defects in this enzyme in patients with TP deficiency suggest that there are two types of defect. Patients in group 1 h ... >> More
Mitochondrial trifunctional protein (TP) is an enzyme complex with three activities: enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase. Studies on defects in this enzyme in patients with TP deficiency suggest that there are two types of defect. Patients in group 1 have normal amount of cross-reacting material by immunoblot and lack only long-chain 3-hydroxyacyl-CoA dehydrogenase activity. Patients in group 2 have a trace amount of cross-reacting material, with all three activities being low. We identified three patients in group 2, and analysis was made at the cDNA level. In patient 2, there was a heterozygous 71-bp deletion at position 110-180 in the alpha-subunit. In patients 1 and 3, there was an abnormal beta-subunit; patient 1 had an A-788-to-G substitution, and patient 3 had G-182-to-A and G-740-to-A substitutions in each of separate alleles. This is the first demonstration of disease-causing mutations in the beta-subunit. cDNA-expression experiments in patients' fibroblasts, using a vaccinia virus system, and gel filtration analysis, using patients' fibroblasts, revealed that the existence of both normal alpha- and beta-subunits, and possibly their association, are important for stabilizing TP and that A-788-to-G substitution on the beta-subunit in patient 1 seems to interfere with the association, the result being a rapid decomposition of TP. << Less
Am. J. Hum. Genet. 58:979-988(1996) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria.
Carpenter K., Pollitt R.J., Middleton B.
We have purified to homogeneity the long-chain specific 3-hydroxyacyl-CoA dehydrogenase from mitochondrial membranes of human infant liver. The enzyme is composed of non-identical subunits of 71 kDa and 47 kDa within a native structure of 230 kDa. The pure enzyme is active with 3-ketohexanoyl-CoA ... >> More
We have purified to homogeneity the long-chain specific 3-hydroxyacyl-CoA dehydrogenase from mitochondrial membranes of human infant liver. The enzyme is composed of non-identical subunits of 71 kDa and 47 kDa within a native structure of 230 kDa. The pure enzyme is active with 3-ketohexanoyl-CoA and gives maximum activity with 3-ketoacyl-CoA substrates of C10 to C16 acyl-chain length but is inactive with acetoacetyl-CoA. In addition to 3-hydroxyacyl-CoA dehydrogenase activity, the enzyme possesses 2-enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase activities which cannot be separated from the dehydrogenase. None of these enzymes show activity with C4 substrates but all are active with C6 and longer acyl-chain length substrates. They are thus distinct from any described previously. This human liver mitochondrial membrane-bound enzyme catalyses the conversion of medium- and long-chain 2-enoyl-CoA compounds to: 1) 3-ketoacyl-CoA in the presence of NAD alone and 2) to acetyl-CoA (plus the corresponding acyl-CoA derivatives) in the presence of NAD and CoASH. It is therefore a multifunctional enzyme, resembling the beta-oxidation enzyme of E. coli, but unique in its membrane location and substrate specificity. We propose that its existence explains the repeated failure to detect any intermediates of mitochondrial beta-oxidation. << Less
Biochem. Biophys. Res. Commun. 183:443-448(1992) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Comparison of the stability and substrate specificity of purified peroxisomal 3-oxoacyl-CoA thiolases A and B from rat liver.
Antonenkov V.D., Van Veldhoven P.P., Waelkens E., Mannaerts G.P.
The specific activities and substrate specificities of 3-oxoacyl-CoA thiolase A (thiolase A) purified from normal rat liver peroxisomes and 3-oxoacyl-CoA thiolase B (thiolase B) isolated from livers of rats treated with the peroxisome proliferator clofibrate were virtually identical. The enzymes c ... >> More
The specific activities and substrate specificities of 3-oxoacyl-CoA thiolase A (thiolase A) purified from normal rat liver peroxisomes and 3-oxoacyl-CoA thiolase B (thiolase B) isolated from livers of rats treated with the peroxisome proliferator clofibrate were virtually identical. The enzymes could be distinguished by their N-terminal amino acid sequences, their isoelectric points and their stability, the latter being higher for thiolase A. Contrary to thiolase B, which showed a marked cold lability in the presence of KCl by dissociating into monomers with poor activity, thiolase A retained its full activity and its homodimeric structure under these conditions. << Less
Biochim. Biophys. Acta 1437:136-141(1999) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Substrate specificities of 3-oxoacyl-CoA thiolase A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty acids and bile acid intermediates.
Antonenkov V.D., Van Veldhoven P.P., Waelkens E., Mannaerts G.P.
The two main thiolase activities present in isolated peroxisomes from normal rat liver were purified to near homogeneity. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the first enzyme preparation displayed a single band of 41 kDa that was identified as 3-oxoacyl-CoA thiolase A (th ... >> More
The two main thiolase activities present in isolated peroxisomes from normal rat liver were purified to near homogeneity. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the first enzyme preparation displayed a single band of 41 kDa that was identified as 3-oxoacyl-CoA thiolase A (thiolase A) by N-terminal amino acid sequencing. The second enzyme preparation consisted of a 58- and a 46-kDa band. The 58-kDa polypeptide reacted with antibodies raised against either sterol carrier protein 2 or the thiolase domain of sterol carrier protein 2/3-oxoacyl-CoA thiolase (SCP-2/thiolase), formerly also called sterol carrier protein X, whereas the 46-kDa polypeptide reacted only with the antibodies raised against the thiolase domain. Internal peptide sequencing confirmed that the 58-kDa polypeptide is SCP-2/thiolase and that the 46-kDa polypeptide is the thiolase domain of SCP-2/thiolase. Thiolase A catalyzed the cleavage of short, medium, and long straight chain 3-oxoacyl-CoAs, medium chain 3-oxoacyl-CoAs being the best substrates. The enzyme was inactive with the 2-methyl-branched 3-oxo-2-methylpalmitoyl-CoA and with the bile acid intermediate 24-oxo-trihydroxycoprostanoyl-CoA. SCP-2/thiolase was active with medium and long straight chain 3-oxoacyl-CoAs but also with the 2-methyl-branched 3-oxoacyl-CoA and the bile acid intermediate. In peroxisomal extracts, more than 90% of the thiolase activity toward straight chain 3-oxoacyl-CoAs was associated with thiolase A. Kinetic parameters (Km and Vmax) were determined for each enzyme with the different substrates. Our results indicate the following: 1) the two (main) thiolases present in peroxisomes from normal rat liver are thiolase A and SCP-2/thiolase; 2) thiolase A is responsible for the thiolytic cleavage of straight chain 3-oxoacyl-CoAs; and 3) SCP-2/thiolase is responsible for the thiolytic cleavage of the 3-oxoacyl-CoA derivatives of 2-methyl-branched fatty acids and the side chain of cholesterol. << Less
J. Biol. Chem. 272:26023-26031(1997) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.