Enzymes
UniProtKB help_outline | 3 proteins |
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline N-acetyl-D-galactosamine 6-phosphate Identifier CHEBI:71673 Charge -2 Formula C8H14NO9P InChIKeyhelp_outline BRGMHAYQAZFZDJ-KEWYIRBNSA-L SMILEShelp_outline CC(=O)N[C@H]1C(O)O[C@H](COP([O-])([O-])=O)[C@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-galactosamine 6-phosphate Identifier CHEBI:71674 Charge -1 Formula C6H13NO8P InChIKeyhelp_outline XHMJOUIAFHJHBW-GASJEMHNSA-M SMILEShelp_outline [NH3+][C@H]1C(O)O[C@H](COP([O-])([O-])=O)[C@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetate Identifier CHEBI:30089 (CAS: 71-50-1) help_outline Charge -1 Formula C2H3O2 InChIKeyhelp_outline QTBSBXVTEAMEQO-UHFFFAOYSA-M SMILEShelp_outline CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 180 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18149 | RHEA:18150 | RHEA:18151 | RHEA:18152 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
N-acetylgalactosamine utilization pathway and regulon in proteobacteria: genomic reconstruction and experimental characterization in Shewanella.
Leyn S.A., Gao F., Yang C., Rodionov D.A.
We used a comparative genomics approach to reconstruct the N-acetyl-d-galactosamine (GalNAc) and galactosamine (GalN) utilization pathways and transcriptional regulons in Proteobacteria. The reconstructed GalNAc/GalN utilization pathways include multiple novel genes with specific functional roles. ... >> More
We used a comparative genomics approach to reconstruct the N-acetyl-d-galactosamine (GalNAc) and galactosamine (GalN) utilization pathways and transcriptional regulons in Proteobacteria. The reconstructed GalNAc/GalN utilization pathways include multiple novel genes with specific functional roles. Most of the pathway variations were attributed to the amino sugar transport, phosphorylation, and deacetylation steps, whereas the downstream catabolic enzymes in the pathway were largely conserved. The predicted GalNAc kinase AgaK, the novel variant of GalNAc-6-phosphate deacetylase AgaA(II) and the GalN-6-phosphate deaminase AgaS from Shewanella sp. ANA-3 were validated in vitro using individual enzymatic assays and reconstitution of the three-step pathway. By using genetic techniques, we confirmed that AgaS but not AgaI functions as the main GalN-6-P deaminase in the GalNAc/GalN utilization pathway in Escherichia coli. Regulons controlled by AgaR repressors were reconstructed by bioinformatics in most proteobacterial genomes encoding GalNAc pathways. Candidate AgaR-binding motifs share a common sequence with consensus CTTTC that was found in multiple copies and arrangements in regulatory regions of aga genes. This study provides comprehensive insights into the common and distinctive features of the GalNAc/GalN catabolism and its regulation in diverse Proteobacteria. << Less
J. Biol. Chem. 287:28047-28056(2012) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.