Enzymes
UniProtKB help_outline | 31,119 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Ca2+ Identifier CHEBI:29108 (CAS: 14127-61-8) help_outline Charge 2 Formula Ca InChIKeyhelp_outline BHPQYMZQTOCNFJ-UHFFFAOYSA-N SMILEShelp_outline [Ca++] 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18105 | RHEA:18106 | RHEA:18107 | RHEA:18108 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
The mechanism of sarcoplasmic reticulum ATPase.
Inesi G., Watanabe T., Coan C., Murphy A.
-
Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution.
Toyoshima C., Nakasako M., Nomura H., Ogawa H.
Calcium ATPase is a member of the P-type ATPases that transport ions across the membrane against a concentration gradient. Here we have solved the crystal structure of the calcium ATPase of skeletal muscle sarcoplasmic reticulum (SERCA1a) at 2.6 A resolution with two calcium ions bound in the tran ... >> More
Calcium ATPase is a member of the P-type ATPases that transport ions across the membrane against a concentration gradient. Here we have solved the crystal structure of the calcium ATPase of skeletal muscle sarcoplasmic reticulum (SERCA1a) at 2.6 A resolution with two calcium ions bound in the transmembrane domain, which comprises ten alpha-helices. The two calcium ions are located side by side and are surrounded by four transmembrane helices, two of which are unwound for efficient coordination geometry. The cytoplasmic region consists of three well separated domains, with the phosphorylation site in the central catalytic domain and the adenosine-binding site on another domain. The phosphorylation domain has the same fold as haloacid dehalogenase. Comparison with a low-resolution electron density map of the enzyme in the absence of calcium and with biochemical data suggests that large domain movements take place during active transport. << Less
-
Calcium movements across the membrane of human red cells.
Schatzmann H.J., Vincenzi F.F.
1. A study has been made of the cellular content and movement of Ca across the membrane of human red blood cells.2. The [Ca] in the cellular contents of fresh red cells is 4.09 x 10(-2) mM. The intracellular concentration of free ionic Ca ([Ca(2+)]) is considered to be less than this value and the ... >> More
1. A study has been made of the cellular content and movement of Ca across the membrane of human red blood cells.2. The [Ca] in the cellular contents of fresh red cells is 4.09 x 10(-2) mM. The intracellular concentration of free ionic Ca ([Ca(2+)]) is considered to be less than this value and therefore less than extracellular [Ca(2+)] under normal conditions.3. Observation of unidirectional Ca fluxes with (45)Ca confirms previous reports of low permeability of the red cell membrane for Ca. After nearly 1 week of loading in the cold, intracellular (45)Ca content is 1.8% of extracellular (45)Ca content. Appearance in extracellular fluid of (45)Ca from coldloaded cells can be considered to arise from two compartments. Efflux of (45)Ca from the ;slower compartment' is accelerated by the addition of glucose.4. Starved red cells, incubated at 37 degrees C, after reversible haemolysis for loading with Ca and Mg-ATP, exhibit an outward net transport of Ca against an electrochemical gradient. The transport is associated with the appearance of inorganic phosphate (P(i)). Cells treated similarly, but without ATP show no transport and no appearance of P(i).5. During the initial phase of transport, 1.3 mole P(i) appear per mole Ca transported.6. The transport of Ca from ATP-loaded cells is highly temperature-dependent, with a Q(10) of 3.5.7. Cell membrane adenosine triphosphatase (ATPase) activity of reversibly haemolysed cells is stimulated only by intracellular, and not by extracellular Ca.8. Neither Ca transport in reversibly haemolysed cells, nor the Ca-Mg activated ATPase of isolated cell membranes is sensitive to Na, K, ouabain or oligomycin.9. Mg is not transported under the conditions which reveal Ca transport, but Mg appears to be necessary for Ca transport.10. Sr is transported from reversibly haemolysed Mg-ATP-loaded cells. Sr also can substitute for Ca, but not for Mg, in the activation of membrane ATPase.11. It is concluded that, in addition to a low passive permeability, an active extrusion mechanism for Ca exists in the human red cell membrane. This extrusion mechanism, in addition to a low passive membrane permeability for Ca, may represent the means by which intracellular Ca content is maintained at a low level. It is suggested that the Ca-Mg activated membrane ATPase and the active transport of Ca are two manifestations of the same process. << Less
-
Crystallization and preliminary structural analysis of the Listeria monocytogenes Ca(2+)-ATPase LMCA1.
Andersen J.L., Gourdon P., Moller J.V., Morth J.P., Nissen P.
Ca(2+)-ATPases are ATP-driven membrane pumps that are responsible for the transport of Ca(2+) ions across the membrane. The Listeria monocytogenes Ca(2+)-ATPase LMCA1 has been crystallized in the Ca(2+)-free state stabilized by AlF(4)(-), representing an occluded E2-P(i)-like state. The crystals b ... >> More
Ca(2+)-ATPases are ATP-driven membrane pumps that are responsible for the transport of Ca(2+) ions across the membrane. The Listeria monocytogenes Ca(2+)-ATPase LMCA1 has been crystallized in the Ca(2+)-free state stabilized by AlF(4)(-), representing an occluded E2-P(i)-like state. The crystals belonged to space group P2(1)2(1)2 and a complete data set extending to 4.3 Å resolution was collected. A molecular-replacement solution was obtained, revealing type I packing of the molecules in the crystal. Unbiased electron-density features were observed for AlF(4)(-) and for shifts of the helices, which were indicative of a reliable structure determination. << Less
-
The Ca2+ pump of the plasma membrane.
Carafoli E.
-
The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases.
MacLennan D.H., Rice W.J., Green N.M.