Enzymes
UniProtKB help_outline | 6 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline indole-3-pyruvate Identifier CHEBI:17640 Charge -1 Formula C11H8NO3 InChIKeyhelp_outline RSTKLPZEZYGQPY-UHFFFAOYSA-M SMILEShelp_outline [O-]C(=O)C(=O)Cc1c[nH]c2ccccc12 2D coordinates Mol file for the small molecule Search links Involved in 16 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline indole-3-acetaldehyde Identifier CHEBI:18086 (Beilstein: 121586; CAS: 2591-98-2) help_outline Charge 0 Formula C10H9NO InChIKeyhelp_outline WHOOUMGHGSPMGR-UHFFFAOYSA-N SMILEShelp_outline O=CCc1c[nH]c2ccccc12 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18017 | RHEA:18018 | RHEA:18019 | RHEA:18020 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae.
Kneen M.M., Stan R., Yep A., Tyler R.P., Saehuan C., McLeish M.J.
The product of the ARO10 gene from Saccharomyces cerevisiae was initially identified as a thiamine diphosphate-dependent phenylpyruvate decarboxylase with a broad substrate specificity. It was suggested that the enzyme could be responsible for the catabolism of aromatic and branched-chain amino ac ... >> More
The product of the ARO10 gene from Saccharomyces cerevisiae was initially identified as a thiamine diphosphate-dependent phenylpyruvate decarboxylase with a broad substrate specificity. It was suggested that the enzyme could be responsible for the catabolism of aromatic and branched-chain amino acids, as well as methionine. In the present study, we report the overexpression of the ARO10 gene product in Escherichia coli and the first detailed in vitro characterization of this enzyme. The enzyme is shown to be an efficient aromatic 2-keto acid decarboxylase, consistent with it playing a major in vivo role in phenylalanine, tryptophan and possibly also tyrosine catabolism. However, its substrate spectrum suggests that it is unlikely to play any significant role in the catabolism of the branched-chain amino acids or of methionine. A homology model was used to identify residues likely to be involved in substrate specificity. Site-directed mutagenesis on those residues confirmed previous studies indicating that mutation of single residues is unlikely to produce the immediate conversion of an aromatic into an aliphatic 2-keto acid decarboxylase. In addition, the enzyme was compared with the phenylpyruvate decarboxylase from Azospirillum brasilense and the indolepyruvate decarboxylase from Enterobacter cloacae. We show that the properties of the two phenylpyruvate decarboxylases are similar in some respects yet quite different in others, and that the properties of both are distinct from those of the indolepyruvate decarboxylase. Finally, we demonstrate that it is unlikely that replacement of a glutamic acid by leucine leads to discrimination between phenylpyruvate and indolepyruvate, although, in this case, it did lead to unexpected allosteric activation. << Less
FEBS J. 278:1842-1853(2011) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
The influence of steric and electronic parameters on the substrate behavior of 2-oxo acids to yeast pyruvate decarboxylase.
Lehmann H., Fischer G., Hubner G., Kohnert K.D., Schellenberger A.
Eur. J. Biochem. 32:83-87(1973) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae.
Dickinson J.R., Salgado L.E., Hewlins M.J.
The catabolism of phenylalanine to 2-phenylethanol and of tryptophan to tryptophol were studied by (13)C NMR spectroscopy and gas chromatography-mass spectrometry. Phenylalanine and tryptophan are first deaminated (to 3-phenylpyruvate and 3-indolepyruvate, respectively) and then decarboxylated. Th ... >> More
The catabolism of phenylalanine to 2-phenylethanol and of tryptophan to tryptophol were studied by (13)C NMR spectroscopy and gas chromatography-mass spectrometry. Phenylalanine and tryptophan are first deaminated (to 3-phenylpyruvate and 3-indolepyruvate, respectively) and then decarboxylated. This decarboxylation can be effected by any of Pdc1p, Pdc5p, Pdc6p, or Ydr380wp; Ydl080cp has no role in the catabolism of either amino acid. We also report that in leucine catabolism Ydr380wp is the minor decarboxylase. Hence, all amino acid catabolic pathways studied to date use a subtly different spectrum of decarboxylases from the five-membered family that comprises Pdc1p, Pdc5p, Pdc6p, Ydl080cp, and Ydr380wp. Using strains containing all possible combinations of mutations affecting the seven AAD genes (putative aryl alcohol dehydrogenases), five ADH genes, and SFA1, showed that the final step of amino acid catabolism (conversion of an aldehyde to a long chain or complex alcohol) can be accomplished by any one of the ethanol dehydrogenases (Adh1p, Adh2p, Adh3p, Adh4p, Adh5p) or by Sfa1p (formaldehyde dehydrogenase.) << Less
J. Biol. Chem. 278:8028-8034(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structure and function of indolepyruvate decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis.
Koga J.