Enzymes
UniProtKB help_outline | 16,995 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate Identifier CHEBI:57429 Charge -3 Formula C7H7O7 InChIKeyhelp_outline HHKPKXCSHMJWCF-WVBDSBKLSA-K SMILEShelp_outline C[C@@](O)([C@H](CC([O-])=O)C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-methyl-cis-aconitate Identifier CHEBI:57872 Charge -3 Formula C7H5O6 InChIKeyhelp_outline NUZLRKBHOBPTQV-ARJAWSKDSA-K SMILEShelp_outline C\C(C([O-])=O)=C(/CC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17941 | RHEA:17942 | RHEA:17943 | RHEA:17944 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Oxidation of propionate to pyruvate in Escherichia coli. Involvement of methylcitrate dehydratase and aconitase.
Brock M., Maerker C., Schuetz A., Voelker U., Buckel W.
The pathway of the oxidation of propionate to pyruvate in Escherichia coli involves five enzymes, only two of which, methylcitrate synthase and 2-methylisocitrate lyase, have been thoroughly characterized. Here we report that the isomerization of (2S,3S)-methylcitrate to (2R,3S)-2-methylisocitrate ... >> More
The pathway of the oxidation of propionate to pyruvate in Escherichia coli involves five enzymes, only two of which, methylcitrate synthase and 2-methylisocitrate lyase, have been thoroughly characterized. Here we report that the isomerization of (2S,3S)-methylcitrate to (2R,3S)-2-methylisocitrate requires a novel enzyme, methylcitrate dehydratase (PrpD), and the well-known enzyme, aconitase (AcnB), of the tricarboxylic acid cycle. AcnB was purified as 2-methylaconitate hydratase from E. coli cells grown on propionate and identified by its N-terminus. The enzyme has an apparent Km of 210 micro m for (2R,3S)-2-methylisocitrate but shows no activity with (2S,3S)-methylcitrate. On the other hand, PrpD is specific for (2S,3S)-methylcitrate (Km = 440 micro m) and catalyses in addition only the hydration of cis-aconitate at a rate that is five times lower. The product of the dehydration of enzymatically synthesized (2S,3S)-methylcitrate was designated cis-2-methylaconitate because of its ability to form a cyclic anhydride at low pH. Hence, PrpD catalyses an unusual syn elimination, whereas the addition of water to cis-2-methylaconitate occurs in the usual anti manner. The different stereochemistries of the elimination and addition of water may be the reason for the requirement for the novel methylcitrate dehydratase (PrpD), the sequence of which seems not to be related to any other enzyme of known function. Northern-blot experiments showed expression of acnB under all conditions tested, whereas the RNA of enzymes of the prp operon (PrpE, a propionyl-CoA synthetase, and PrpD) was exclusively present during growth on propionate. 2D gel electrophoresis showed the production of all proteins encoded by the prp operon during growth on propionate as sole carbon and energy source, except PrpE, which seems to be replaced by acetyl-CoA synthetase. This is in good agreement with investigations on Salmonella enterica LT2, in which disruption of the prpE gene showed no visible phenotype. << Less
Eur. J. Biochem. 269:6184-6194(2002) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
Comments
Published in: "Isolation of 2-methylisocitrate dehydratase, a new enzyme serving in the methylcitric acid cycle for propionate metabolism, from Yarrowia lipolytica." Aoki, H., Uchiyama, H., Umetsu, H., Tabuchi, T. Biosci. Biotechnol. Biochem. 59:1825–1828(1995) Tabuchi, T., Umetsu, H., Aoki, H., Uchiyama, H. "Characteristics of 2-methylisocitrate dehydratase, isolated from Yarrowia lipolytica, in comparison to aconitase." Biosci. Biotechnol. Biochem. 59:2013–2017(1995)