Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme classes help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline α-L-arabinopyanose Identifier CHEBI:46987 (Beilstein: 1722189) help_outline Charge 0 Formula C5H10O5 InChIKeyhelp_outline SRBFZHDQGSBBOR-QMKXCQHVSA-N SMILEShelp_outline O[C@H]1CO[C@@H](O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-arabinono-1,4-lactone Identifier CHEBI:17100 (Beilstein: 82060; CAS: 51532-86-6) help_outline Charge 0 Formula C5H8O5 InChIKeyhelp_outline CUOKHACJLGPRHD-YVZJFKFKSA-N SMILEShelp_outline OC[C@@H]1OC(=O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17925 | RHEA:17926 | RHEA:17927 | RHEA:17928 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
L-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of L-arabinose dehydrogenase.
Johnsen U., Sutter J.M., Zaiss H., Schoenheit P.
The pathway of L-arabinose degradation was studied in the haloarchaeon Haloferax volcanii. It is shown that L-arabinose is oxidatively degraded to α-ketoglutarate. During growth on L-arabinose, L-arabinose dehydrogenase (L-AraDH) was induced. The enzyme was purified as a 130 kDa homotetrameric pro ... >> More
The pathway of L-arabinose degradation was studied in the haloarchaeon Haloferax volcanii. It is shown that L-arabinose is oxidatively degraded to α-ketoglutarate. During growth on L-arabinose, L-arabinose dehydrogenase (L-AraDH) was induced. The enzyme was purified as a 130 kDa homotetrameric protein catalyzing the oxidation of L-arabinose with both NADP(+) and NAD(+). The gene encoding L-AraDH was identified as HVO_B0032 and recombinant L-AraDH showed similar properties as the native enzyme. The L-AraDH deletion mutant did not grow on L-arabinose, but grew unaffected on glucose and D-xylose, indicating a specific involvement in L-arabinose degradation. Phylogenetic analyses attribute the first archaeal L-AraDH to the extended short-chain dehydrogenase/reductase (SDRe) family, where it is part of a novel cluster and thus differs from known archaeal and bacterial pentose dehydrogenases. Further, cell extracts of H. volcanii catalyzed the NADP(+)-dependent conversion of L-arabinoate to α-ketoglutarate. The genes involved in that conversion were identified by analyses of transcripts and deletion mutants as HVO_B0038A, HVO_B0027 and HVO_B0039 recently reported to be involved in D-xylonate conversion to α-ketoglutarate in H. volcanii (Johnsen et al. 2009). << Less
Extremophiles 17:897-909(2013) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Cloning, expression, and characterization of bacterial L-arabinose 1-dehydrogenase involved in an alternative pathway of L-arabinose metabolism.
Watanabe S., Kodaki T., Makino K.
Azospirillum brasiliense converts L-arabinose to alpha-ketoglutarate via five hypothetical enzymatic steps. We purified and characterized L-arabinose 1-dehydrogenase (EC 1.1.1.46), catalyzing the conversion of L-arabinose to L-arabino-gamma-lactone as an enzyme responsible for the first step of th ... >> More
Azospirillum brasiliense converts L-arabinose to alpha-ketoglutarate via five hypothetical enzymatic steps. We purified and characterized L-arabinose 1-dehydrogenase (EC 1.1.1.46), catalyzing the conversion of L-arabinose to L-arabino-gamma-lactone as an enzyme responsible for the first step of this alternative pathway of L-arabinose metabolism. The purified enzyme preferred NADP+ to NAD+ as a coenzyme. Kinetic analysis revealed that the enzyme had high catalytic efficiency for both L-arabinose and D-galactose. The gene encoding L-arabinose 1-dehydrogenase was cloned using a partial peptide sequence of the purified enzyme and was overexpressed in Escherichia coli as a fully active enzyme. The enzyme consists of 308 amino acids and has a calculated molecular mass of 33,663.92 Da. The deduced amino acid sequence had some similarity to glucose-fructose oxidoreductase, D-xylose 1-dehydrogenase, and D-galactose 1-dehydrogenase. Site-directed mutagenesis revealed that the enzyme possesses unique catalytic amino acid residues. Northern blot analysis showed that this gene was induced by L-arabinose but not by D-galactose. Furthermore, a disruptant of the L-arabinose 1-dehydrogenase gene did not grow on L-arabinose but grew on D-galactose at the same growth rate as the wild-type strain. There was a partial gene for L-arabinose transport in the flanking region of the L-arabinose 1-dehydrogenase gene. These results indicated that the enzyme is involved in the metabolism of L-arabinose but not D-galactose. This is the first identification of a gene involved in an alternative pathway of L-arabinose metabolism in bacterium. << Less
J. Biol. Chem. 281:2612-2623(2006) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
L-arabinose/D-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of L-arabinose to L-arabonate with Saccharomyces cerevisiae.
Aro-Karkkainen N., Toivari M., Maaheimo H., Ylilauri M., Pentikainen O.T., Andberg M., Oja M., Penttila M., Wiebe M.G., Ruohonen L., Koivula A.
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for L-arabonate production from L-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a D-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium l ... >> More
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for L-arabonate production from L-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a D-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a L-arabinose/D-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP(+) but uses also NAD(+) as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards L-arabinose, D-galactose and D-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of L-arabinose, and the stable oxidation product detected is L-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear L-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for L-arabinose uptake, resulted in production of 18 g of L-arabonate per litre, at a rate of 248 mg of L-arabonate per litre per hour, with 86 % of the provided L-arabinose converted to L-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for L-arabonate production in yeast. << Less
Appl Microbiol Biotechnol 98:9653-9665(2014) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The oxidation of L-arabinose by Pseudomonas saccharophila.
WEIMBERG R., DOUDOROFF M.
J Biol Chem 217:607-624(1955) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.